Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Sentef is active.

Publication


Featured researches published by Michael Sentef.


Physical Review B | 2007

Spin transport in Heisenberg antiferromagnets in two and three dimensions

Michael Sentef; Marcus Kollar; Arno P. Kampf

We analyze spin transport in insulating antiferromagnets described by the XXZ Heisenberg model in two and three dimensions. Spin currents can be generated by a magnetic-field gradient or, in systems with spin-orbit coupling, perpendicular to a time-dependent electric field. The Kubo formula for the longitudinal spin conductivity is derived analogously to the Kubo formula for the optical conductivity of electronic systems. The spin conductivity is calculated within interacting spin-wave theory. In the Ising regime, the XXZ magnet is a spin insulator. For the isotropic Heisenberg model, the dimensionality of the system plays a crucial role: In d=3 the regular part of the spin conductivity vanishes linearly in the zero frequency limit, whereas in d=2 it approaches a finite zero frequency value.


Nature Communications | 2015

Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene

Michael Sentef; Martin Claassen; A. F. Kemper; Brian Moritz; Takashi Oka; J. K. Freericks; T. P. Devereaux

Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that short optical pulses attainable in experiments can lead to local spectral gaps and novel pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these states by measuring sizeable energy gaps and Floquet band formation on femtosecond time scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify new states with optically induced nontrivial changes of sublattice mixing that leads to Berry curvature corrections of electrical transport and magnetization.


Nature Communications | 2017

Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

Hannes Hübener; Michael Sentef; Umberto De Giovannini; A. F. Kemper; Angel Rubio

Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet–Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.


Physical Review B | 2016

Theory of light-enhanced phonon-mediated superconductivity

Michael Sentef; A. F. Kemper; Antoine Georges; Corinna Kollath

We investigate the dynamics of a phonon-mediated superconductor driven out of equilibrium. The electronic hopping amplitude is ramped down in time, resulting in an increased electronic density of states. The dynamics of the coupled electron-phonon model is investigated by solving Migdal-Eliashberg equations for the double-time Keldysh Greens functions. The increase of the density of states near the Fermi level leads to an enhancement of superconductivity when the system thermalizes to the new state at the same temperature. We provide a time- and momentum-resolved view on this thermalization process, and show that it involves fast processes associated with single-particle scattering and much slower dynamics associated with the superconducting order parameter. The importance of electron-phonon coupling for the rapid enhancement and the efficient thermalization of superconductivity is demonstrated, and the results are compared to a BCS time-dependent mean-field approximation.


Nature Communications | 2016

Energy dissipation from a correlated system driven out of equilibrium

J. D. Rameau; S. Freutel; A. F. Kemper; Michael Sentef; J. K. Freericks; I. Avigo; M. Ligges; L. Rettig; Yoshiyuki Yoshida; H. Eisaki; John Schneeloch; Ruidan Zhong; Z. J. Xu; Genda Gu; P. D. Johnson; Uwe Bovensiepen

In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron–boson interactions from electron–electron interactions. We demonstrate a quantitative analysis of a well-defined electron–boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.In complex materials various interactions play important roles in determining the material properties. Angle Resolved Photoelectron Spectroscopy (ARPES) has been used to study these processes by resolving the complex single particle self energy Σ(E) and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self energy often leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) and show how measuring the population dynamics using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate the analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+xcharacterized by an excited population decay time that maps directly to a discrete component of the equilibrium self energy not readily isolated by static ARPES experiments.


Physical Review Letters | 2017

Theory of Laser-Controlled Competing Superconducting and Charge Orders

Michael Sentef; Akiyuki Tokuno; Antoine Georges; Corinna Kollath

We investigate the nonequilibrium dynamics of competing coexisting superconducting (SC) and charge-density wave (CDW) orders in an attractive Hubbard model. A time-periodic laser field A[over →](t) lifts the SC-CDW degeneracy, since the CDW couples linearly to the field (A[over →]), whereas SC couples in second order (A[over →]^{2}) due to gauge invariance. This leads to a striking resonance: When the photon energy is red detuned compared to the equilibrium single-particle energy gap, CDW is enhanced and SC is suppressed, while this behavior is reversed for blue detuning. Both orders oscillate with an emergent slow frequency, which is controlled by the small amplitude of a third induced order, namely η pairing, given by the commutator of the two primary orders. The induced η pairing is shown to control the enhancement and suppression of the dominant orders. Finally, we demonstrate that light-induced superconductivity is possible starting from a predominantly CDW initial state.


Physical Review B | 2014

Effect of dynamical spectral weight redistribution on effective interactions in time-resolved spectroscopy

A. F. Kemper; Michael Sentef; Brian Moritz; J. K. Freericks; T. P. Devereaux

The redistribution of electrons in an ultrafast pump-probe experiment causes significant changes to the spectral distribution of the retarded interaction between electrons and bosonic modes. We study the influence of these changes on pump-probe photoemission spectroscopy for a model electron-phonon coupled system using the nonequilibrium Keldysh formalism. We show that spectral rearrangement due to the driving field preserves an overall sum rule for the electronic self-energy, but modifies the effective electron-phonon scattering as a function of energy. Experimentally, this pump-modified scattering can be tracked by analyzing the fluence or excitation energy dependence of population decay rates and transient changes in dispersion kinks.


Physical Review B | 2017

Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling

Michael Sentef

We investigate an exact nonequilibrium solution of a two-site electron-phonon model, where an infrared-active phonon that is nonlinearly coupled to the electrons is driven by a laser field. The time-resolved electronic spectrum shows coherence-incoherence spectral weight transfer, a clear signature of light-enhanced electron-phonon coupling. The present study is motivated by recent evidence for enhanced electron-phonon coupling in pump-probe terahertz and angle-resolved photoemission spectroscopy in bilayer graphene when driven near resonance with an infrared-active phonon mode [E. Pomarico et al., Phys. Rev. B 95, 024304 (2017)], and by a theoretical study suggesting that transient electronic attraction arises from nonlinear electron-phonon coupling [D. M. Kennes et al., Nat. Phys. 13, 479 (2017)]. We show that a linear scaling of light-enhanced electron-phonon coupling with the pump field intensity emerges, in accordance with a time-nonlocal self-energy based on a mean-field decoupling using quasiclassical phonon coherent states. Finally, we demonstrate that this leads to enhanced double occupancies in accordance with an effective electron-electron attraction. Our results suggest that materials with strong phonon nonlinearities provide an ideal playground to achieve light-enhanced electron-phonon coupling and possibly light-induced superconductivity.


Physical Review B | 2015

Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors

A. F. Kemper; Michael Sentef; Brian Moritz; J. K. Freericks; T. P. Devereaux

Using the non-equilibrium Keldysh formalism, we solve the equations of motion for electron-phonon superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra out of equilibrium which probes the dynamics of the superconducting gap edge. The partial melting of the order by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and detected without any additional symmetry breaking.


Physical Review B | 2013

Mapping of unoccupied states and relevant bosonic modes via the time-dependent momentum distribution

A. F. Kemper; Michael Sentef; Brian Moritz; Chi-Chang Kao; Zhi-Xun Shen; J. K. Freericks; T. P. Devereaux

The unoccupied states of complex materials are difficult to measure, yet play a key role in determining their properties. We propose a technique that can measure the unoccupied states, called time-resolved Compton scattering, which measures the time-dependent momentum distribution (TDMD). Using a non-equilibrium Keldysh formalism, we study the TDMD for electrons coupled to a lattice in a pump-probe setup. We find a direct relation between temporal oscillations in the TDMD and the dispersion of the underlying unoccupied states, suggesting that both can be measured by time-resolved Compton scattering. We demonstrate the experimental feasibility by applying the method to a model of MgB

Collaboration


Dive into the Michael Sentef's collaboration.

Top Co-Authors

Avatar

A. F. Kemper

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. P. Devereaux

Geballe Laboratory for Advanced Materials

View shared research outputs
Top Co-Authors

Avatar

Brian Moritz

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge