Michael Shatruk
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Shatruk.
Organic Letters | 2010
Jin Kyoon Park; Hershel H. Lackey; Matthew D. Rexford; Kirill Kovnir; Michael Shatruk; D. Tyler McQuade
A chiral 6-membered annulated N-heterocyclic (6-NHC) copper complex that catalyzes β-borylations with high yield and enantioselectivity was developed. The chiral 6-NHC copper complex is easy to prepare on the gram scale and is very active, showing 10,000 turnovers at 0.01 mol % of catalyst without significant decrease of enantioselectivity and with useful reaction rates.
Inorganic Chemistry | 2012
Pampa M. Guha; Hoa Phan; Jared S. Kinyon; Wendy S. Brotherton; Kesavapillai Sreenath; J. Tyler Simmons; Zhenxing Wang; Ronald J. Clark; N. S. Dalal; Michael Shatruk; Lei Zhu
Copper(II) acetate mediated coupling reactions between 2,6-bis(azidomethyl)pyridine or 2-picolylazide and two terminal alkynes afford 1,2,3-triazolyl-containing ligands L(1)-L(6). These ligands contain various nitrogen-based Lewis basic sites including two different pyridyls, two nitrogen atoms on a 1,2,3-triazolyl ring, and the azido group. A rich structural diversity, which includes mononuclear and dinuclear complexes as well as one-dimensional polymers, was observed in the copper(II) complexes of L(1)-L(6). The preference of copper(II) to two common bidentate 1,2,3-triazolyl-containing coordination sites was investigated using isothermal titration calorimetry and, using zinc(II) as a surrogate, in (1)H NMR titration experiments. The magnetic interactions between the copper(II) centers in three dinuclear complexes were analyzed via temperature-dependent magnetic susceptibility measurements and high-frequency electron paramagnetic resonance spectroscopy. The observed magnetic superexchange is strongly dependent on the orientation of magnetic orbitals of the copper(II) ions and can be completely turned off if these orbitals are arranged orthogonal to each other. This work demonstrates the versatility of 1,2,3-triazolyl-containing polyaza ligands in forming metal coordination complexes of a rich structural diversity and interesting magnetic properties.
Journal of the American Chemical Society | 2013
Xiaoyan Tan; Ping Chai; Corey M. Thompson; Michael Shatruk
AlFe2B2 was prepared by two alternative synthetic routes, arc melting and synthesis from Ga flux. In the layered crystal structure, infinite chains of B atoms are connected by Fe atoms into two-dimensional [Fe2B2] slabs that alternate with layers of Al atoms. As expected from the theoretical analysis of electronic band structure, the compound exhibits itinerant ferromagnetism, with the ordering temperature of 307 K. The measurement of magnetocaloric effect (MCE) as a function of applied magnetic field reveals isothermal entropy changes of 4.1 J kg(-1) K(-1) at 2 T and 7.7 J kg(-1) K(-1) at 5 T. These are the largest values observed near room temperature for any metal boride and for any magnetic material of the vast 122 family of layered structures. Importantly, AlFe2B2 represents a rare case of a lightweight material prepared from earth-abundant, benign reactants which exhibits a substantial MCE while not containing any rare-earth elements.
Nature Chemistry | 2014
Matthew J. Polinski; Edward B. Garner; Rémi Maurice; Nora Planas; Jared T. Stritzinger; T. Gannon Parker; Justin N. Cross; Thomas D. Green; Evgeny V. Alekseev; Shelley M. Van Cleve; Wulf Depmeier; Laura Gagliardi; Michael Shatruk; Kenneth L. Knappenberger; Guokui Liu; S. Skanthakumar; L. Soderholm; David A. Dixon; Thomas E. Albrecht-Schmitt
The participation of the valence orbitals of actinides in bonding has been debated for decades. Recent experimental and computational investigations demonstrated the involvement of 6p, 6d and/or 5f orbitals in bonding. However, structural and spectroscopic data, as well as theory, indicate a decrease in covalency across the actinide series, and the evidence points to highly ionic, lanthanide-like bonding for late actinides. Here we show that chemical differentiation between californium and lanthanides can be achieved by using ligands that are both highly polarizable and substantially rearrange on complexation. A ligand that suits both of these desired properties is polyborate. We demonstrate that the 5f, 6d and 7p orbitals are all involved in bonding in a Cf(III) borate, and that large crystal-field effects are present. Synthetic, structural and spectroscopic data are complemented by quantum mechanical calculations to support these observations.
Dalton Transactions | 2011
Wendy S. Brotherton; Pampa M. Guha; Hoa Phan; Ronald J. Clark; Michael Shatruk; Lei Zhu
Rapid coupling reactions between 2,6-bis(azidomethyl)pyridine and terminal alkynes in the presence of 5 mol% Cu(OAc)(2)·H(2)O without the addition of a reducing agent afford tridentate ligands for first-row transition-metal ions. The chelation between Cu(II) and alkylated nitrogen atoms of the azido groups of 2,6-bis(azidomethyl)pyridine, as observed in the solid state, is credited for the acceleration of the azide-alkyne cycloaddition reactions.
Journal of the American Chemical Society | 2014
Kristina Lekin; Hoa Phan; Stephen M. Winter; Joanne W. L. Wong; Alicea A. Leitch; Dominique Laniel; Wenjun Yong; Richard A. Secco; John S. Tse; Serge Desgreniers; Paul A. Dube; Michael Shatruk; Richard T. Oakley
The heterocyclic bisdithiazolyl radical 1b (R1 = Me, R2 = F) crystallizes in two phases. The α-phase, space group P2₁/n, contains two radicals in the asymmetric unit, both of which adopt slipped π-stack structures. The β-phase, space group P2₁/c, consists of cross-braced π-stacked arrays of dimers in which the radicals are linked laterally by hypervalent 4-center 6-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility measurements on α-1b indicate Curie-Weiss behavior (with Θ = -14.9 K), while the dimer phase β-1b is diamagnetic, showing no indication of thermal dissociation below 400 K. High-pressure crystallographic measurements indicate that the cross-braced π-stacked arrays of dimers undergo a wine-rack compression, but the dimer remains intact up to 8 GPa (at ambient temperature). The resistance of β-1b to dissociate under pressure, also observed in its conductivity versus pressure profile, is in marked contrast to the behavior of the related dimer β-1a (R1 = Et, R2 = F), which readily dissociates into a pair of radicals at 0.8 GPa. The different response of the two dimers to pressure has been rationalized in terms of differences in their linear compressibilities occasioned by changes in the degree of cross-bracing of the π-stacks. Dissociation of both dimers can be effected by irradiation with visible (λ = 650 nm) light; the transformation has been monitored by optical spectroscopy, magnetic susceptibility measurements, and single crystal X-ray diffraction. The photoinduced radical pairs persist up to temperatures of 150 K (β-1b) and 242 K (β-1a) before reverting to the dimer state. Variable-temperature optical measurements on β-1b and β-1a have afforded Arrhenius activation energies of 8.3 and 19.6 kcal mol(-1), respectively, for the radical-to-dimer reconversion. DFT and CAS-SCF calculations have been used to probe the ground and excited electronic state structures of the dimer and radical pair. The results support the interpretation that the ground-state interconversion of the dimer and radical forms of β-1a and β-1b is symmetry forbidden, while the photochemical transformation is symmetry allowed.
Inorganic Chemistry | 2013
Aloke Kumar Ghosh; Michael Shatruk; Valerio Bertolasi; Kausikisankar Pramanik; Debashis Ray
Three different carboxylato bridges (R = C2H5, CF3, and PhCH2 in RCO2(-)) have been used to obtain the supramolecular aggregates [Ni5(μ-H2bpmp)2(μ3-OH)2(μ1,3-O2CC2H5)6]·2H2O·4DMF (1·2H2O·4DMF), [Ni4(μ3-H2bpmp)2(μ3-OH)2(μ1,3-O2CCF3)2](CF3CO2)2·H2O (2·H2O), and [Ni4(μ3-H2bpmp)2(μ3-OH)2(μ1,3-O2CCH2Ph)2](PhCH2CO2)2·4H2O (3·4H2O) (H3bpmp =2,6-bis-[(3-hydroxy-propylimino)-methyl]-4-methyl-phenol) from the hydroxido-bridged dinuclear motif [Ni2(μ-H2bpmp)(OH)](2+). These complexes have been characterized by X-ray crystallography and magnetic measurements. A change from propanoate group to trifluoroacetate and phenylaceate groups provided different course of cluster assembly based on Ni2(μ-H2bpmp)2 fragments. The {Ni5(μ3-OH)2(μ1,3-O2CC2H5)6}(2+) core in 1 contains five Ni(II) ions in an hourglass (pentanuclear vertex-shared double cubane) arrangement. These compounds are new examples of [Ni5] and [Ni4] complexes where aggregation of the building motifs are guided by the nature of the carboxylate anions, which allows an effective tuning of the self-aggregate process within same ligand environment. The study of the magnetic properties reveals that 1 exhibits an S = 3 ground state. Nevertheless, the magnetization increases above the expected saturation value of 6 μB at higher fields, because of the suppression of antiferromagnetic exchange between the central and peripheral Ni(II) ions. Complexes 2 and 3 exhibit ferromagnetic exchange interactions that result in the S = 4 ground state. Examination of AC magnetic susceptibility showed that complex 2 in finely ground form behaves as spin glass with the spin-freezing temperature of ∼5.5 K. This behavior was attributed to the collapse of the structure upon the loss of interstitial solvent. Such property was not observed for complex 3, in which the bulkier carboxylate ligands provide for a more robust crystal packing and larger separation between the [Ni4O4] clusters.
Physical Review B | 2014
A. A. Gippius; V.Yu. Verchenko; A.V. Tkachev; N.E. Gervits; C. S. Lue; Alexander A. Tsirlin; N. Büttgen; W. Krätschmer; M. Baenitz; Michael Shatruk; Andrei V. Shevelkov
The evolution of the electronic structure and magnetic properties with Co substitution for Fe in the solid solution Fe
Inorganic Chemistry | 2008
Ferdi Karadas; Eric J. Schelter; Michael Shatruk; Andrey V. Prosvirin; John Bacsa; Dmitry Smirnov; Andrew Ozarowski; Joshua Telser; Kim R. Dunbar
_{1-x}
Journal of the American Chemical Society | 2014
Ashley R. Longstreet; Minyoung Jo; Rebecca R. Chandler; Kenneth Hanson; Naiqian Zhan; Jeremy J. Hrudka; Hedi Mattoussi; Michael Shatruk; D. Tyler McQuade
Co