Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Sheets is active.

Publication


Featured researches published by Michael Sheets.


Cancer Discovery | 2013

Discovery of a Mutant-Selective Covalent Inhibitor of EGFR that Overcomes T790M-Mediated Resistance in NSCLC

Annette O Walter; Robert Tjin Tham Sjin; Henry J Haringsma; Kadoaki Ohashi; Jing Sun; Kwangho Lee; Aleksander Dubrovskiy; Matthew T. Labenski; Zhendong Zhu; Zhigang Wang; Michael Sheets; Thia St Martin; Russell Karp; Dan van Kalken; Prasoon Chaturvedi; Deqiang Niu; M. Nacht; Russell C. Petter; William F. Westlin; Kevin Lin; Sarah S. Jaw-Tsai; Mitch Raponi; Terry Van Dyke; Jeff Etter; Zoe Weaver; William Pao; Juswinder Singh; Andrew Simmons; Thomas Harding; Andrew E. Allen

UNLABELLED Patients with non-small cell lung cancer (NSCLC) with activating EGF receptor (EGFR) mutations initially respond to first-generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR(T790M) mutation. CO-1686 is a novel, irreversible, and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR, including T790M, while exhibiting minimal activity toward the wild-type (WT) receptor. Oral administration of CO-1686 as single agent induces tumor regression in EGFR-mutated NSCLC tumor xenograft and transgenic models. Minimal activity of CO-1686 against the WT EGFR receptor was observed. In NSCLC cells with acquired resistance to CO-1686 in vitro, there was no evidence of additional mutations or amplification of the EGFR gene, but resistant cells exhibited signs of epithelial-mesenchymal transition and demonstrated increased sensitivity to AKT inhibitors. These results suggest that CO-1686 may offer a novel therapeutic option for patients with mutant EGFR NSCLC. SIGNIFICANCE We report the preclinical development of a novel covalent inhibitor, CO-1686, that irreversibly and selectively inhibits mutant EGFR, in particular the T790M drug-resistance mutation, in NSCLC models. CO-1686 is the fi rst drug of its class in clinical development for the treatment of T790M-positive NSCLC, potentially offering potent inhibition of mutant EGFR while avoiding the on-target toxicity observed with inhibition of the WT EGFR.


Journal of Pharmacology and Experimental Therapeutics | 2013

Inhibition of Btk with CC-292 Provides Early Pharmacodynamic Assessment of Activity in Mice and Humans

Erica Evans; Richland Wayne Tester; Sharon Aslanian; Russell Karp; Michael Sheets; Matthew T. Labenski; Steven Richard Witowski; Heather Lounsbury; Prasoon Chaturvedi; Hormoz Mazdiyasni; Zhendong Zhu; M. Nacht; Martin I. Freed; Russell C. Petter; Alex Dubrovskiy; Juswinder Singh; William F. Westlin

Targeted therapies that suppress B cell receptor (BCR) signaling have emerged as promising agents in autoimmune disease and B cell malignancies. Bruton’s tyrosine kinase (Btk) plays a crucial role in B cell development and activation through the BCR signaling pathway and represents a new target for diseases characterized by inappropriate B cell activity. N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide (CC-292) is a highly selective, covalent Btk inhibitor and a sensitive and quantitative assay that measures CC-292-Btk engagement has been developed. This translational pharmacodynamic assay has accompanied CC-292 through each step of drug discovery and development. These studies demonstrate the quantity of Btk bound by CC-292 correlates with the efficacy of CC-292 in vitro and in the collagen-induced arthritis model of autoimmune disease. Recently, CC-292 has entered human clinical trials with a trial design that has provided rapid insight into safety, pharmacokinetics, and pharmacodynamics. This first-in-human healthy volunteer trial has demonstrated that a single oral dose of 2 mg/kg CC-292 consistently engaged all circulating Btk protein and provides the basis for rational dose selection in future clinical trials. This targeted covalent drug design approach has enabled the discovery and early clinical development of CC-292 and has provided support for Btk as a valuable drug target for B-cell mediated disorders.


Cancer Discovery | 2015

First Selective Small Molecule Inhibitor of FGFR4 for the Treatment of Hepatocellular Carcinomas with an Activated FGFR4 Signaling Pathway

Margit Hagel; Chandra Miduturu; Michael Sheets; Nooreen Rubin; Weifan Weng; Nicolas Stransky; Neil Bifulco; Joseph L. Kim; Brian L. Hodous; Natasja Brooijmans; Adam Shutes; Christopher Winter; Christoph Lengauer; Nancy E. Kohl; Timothy J. Guzi

UNLABELLED Aberrant signaling through the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR 4) signaling complex has been shown to cause hepatocellular carcinoma (HCC) in mice and has been implicated to play a similar role in humans. We have developed BLU9931, a potent and irreversible small-molecule inhibitor of FGFR4, as a targeted therapy to treat patients with HCC whose tumors have an activated FGFR4 signaling pathway. BLU9931 is exquisitely selective for FGFR4 versus other FGFR family members and all other kinases. BLU9931 shows remarkable antitumor activity in mice bearing an HCC tumor xenograft that overexpresses FGF19 due to amplification as well as a liver tumor xenograft that overexpresses FGF19 mRNA but lacks FGF19 amplification. Approximately one third of patients with HCC whose tumors express FGF19 together with FGFR4 and its coreceptor klotho β (KLB) could potentially respond to treatment with an FGFR4 inhibitor. These findings are the first demonstration of a therapeutic strategy that targets a subset of patients with HCC. SIGNIFICANCE This article documents the discovery of BLU9931, a novel irreversible kinase inhibitor that specifically targets FGFR4 while sparing all other FGFR paralogs and demonstrates exquisite kinome selectivity. BLU9931 is efficacious in tumors with an intact FGFR4 signaling pathway that includes FGF19, FGFR4, and KLB. BLU9931 is the first FGFR4-selective molecule for the treatment of patients with HCC with aberrant FGFR4 signaling.


Nature Chemical Biology | 2011

Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine

Margit Hagel; Deqiang Niu; Thia St. Martin; Michael Sheets; Lixin Qiao; Hugues Bernard; Russell Karp; Zhendong Zhu; Matthew T. Labenski; Prasoon Chaturvedi; Mariana Nacht; William F. Westlin; Russell C. Petter; Juswinder Singh

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.


Molecular Cancer Therapeutics | 2014

In vitro and In vivo Characterization of Irreversible Mutant-Selective EGFR Inhibitors that are Wild-type Sparing

Robert Tjin Tham Sjin; Kwangho Lee; Annette O. Walter; Aleksandr Dubrovskiy; Michael Sheets; Thia St Martin; Matthew T. Labenski; Zhendong Zhu; Richland Wayne Tester; Russell Karp; Aravind Prasad Medikonda; Prasoon Chaturvedi; Yixuan Ren; Henry J. Haringsma; Jeff Etter; Mitch Raponi; Andrew Simmons; Thomas C. Harding; Deqiang Niu; M. Nacht; William F. Westlin; Russell C. Petter; Andrew M. Allen; Juswinder Singh

Patients with non–small cell lung carcinoma (NSCLC) with activating mutations in epidermal growth factor receptor (EGFR) initially respond well to the EGFR inhibitors erlotinib and gefitinib. However, all patients relapse because of the emergence of drug-resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. Second-generation irreversible EGFR inhibitors are effective against T790M mutations in vitro, but retain affinity for wild-type EGFR (EGFRWT). These inhibitors have not provided compelling clinical benefit in T790M-positive patients, apparently because of dose-limiting toxicities associated with inhibition of EGFRWT. Thus, there is an urgent clinical need for therapeutics that overcome T790M drug resistance while sparing EGFRWT. Here, we describe a lead optimization program that led to the discovery of four potent irreversible 2,4-diaminopyrimidine compounds that are EGFR mutant (EGFRmut) selective and have been designed to have low affinity for EGFRWT. Pharmacokinetic and pharmacodynamic studies in H1975 tumor–bearing mice showed that exposure was dose proportional resulting in dose-dependent EGFR modulation. Importantly, evaluation of normal lung tissue from the same animals showed no inhibition of EGFRWT. Of all the compounds tested, compound 3 displayed the best efficacy in EGFRL858R/T790M-driven tumors. Compound 3, now renamed CO-1686, is currently in a phase I/II clinical trial in patients with EGFRmut-advanced NSCLC that have received prior EGFR-directed therapy. Mol Cancer Ther; 13(6); 1468–79. ©2014 AACR.


Journal of Medicinal Chemistry | 2013

Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kα.

Mariana Nacht; Lixin Qiao; Michael Sheets; Thia St. Martin; Matthew T. Labenski; Hormoz Mazdiyasni; Russell Karp; Zhendong Zhu; Prasoon Chaturvedi; Deepa Bhavsar; Deqiang Niu; William F. Westlin; Russell C. Petter; Aravind Prasad Medikonda; Juswinder Singh

PI3Kα has been identified as an oncogene in human tumors. By use of rational drug design, a targeted covalent inhibitor 3 (CNX-1351) was created that potently and specifically inhibits PI3Kα. We demonstrate, using mass spectrometry and X-ray crystallography, that the selective inhibitor covalently modifies PI3Kα on cysteine 862 (C862), an amino acid unique to the α isoform, and that PI3Kβ, -γ, and -δ are not covalently modified. 3 is able to potently (EC(50) < 100 nM) and specifically inhibit signaling in PI3Kα-dependent cancer cell lines, and this leads to a potent antiproliferative effect (GI(50) < 100 nM). A covalent probe, 8 (CNX-1220), which selectively bonds to PI3Kα, was used to investigate the duration of occupancy of 3 with PI3Kα in vivo. This is the first report of a PI3Kα-selective inhibitor, and these data demonstrate the biological impact of selectively targeting PI3Kα.


MedChemComm | 2012

Superiority of a novel EGFR targeted covalent inhibitor over its reversible counterpart in overcoming drug resistance

Juswinder Singh; Erica Evans; Margit Hagel; Matthew Labinski; Alex Dubrovskiy; M. Nacht; Russell C. Petter; Aravind Prasad; Michael Sheets; Thia St Martin; Robert Tjin Tham Sjin; William F. Westlin; Zhendong Zhu

Recently, the importance of targeted covalent inhibitors in addressing potency, selectivity and drug resistance has become of great interest, especially in the area of non-small cell lung cancer (NSCLC). Although several covalent EGFR TKIs that are advancing in NSCLC clinical development are active against mutations which are refractory to the reversible TKI drugs Tarceva and Iressa, limited chemical diversity has been explored; all of the irreversible and reversible clinical compounds share the same quinazoline scaffold. We describe the design of a novel pyrimidine-based irreversible inhibitor of EGFR (CNX17) which is active against both the WT EGFR as well as the resistance mutation L858R/T790M in biochemical assays. The inhibitor is also a potent inhibitor of EGFR signaling, including the L858R/T790M resistance mutation in cells (H1975 cell line, EC50 441 nM). Importantly, it also potently inhibits proliferation in both HCC827 (EGFRΔ746–750 EC50 < 5 nM) and H1975 (EC50 134 nM). This novel chemical scaffold may be an important addition to the armamentarium in overcoming drug resistance to current EGFR therapies.


Cancer Discovery | 2018

Precision Targeted Therapy With BLU-667 for RET-Driven Cancers

Vivek Subbiah; Justin F. Gainor; Rami Rahal; Jason D. Brubaker; Joseph L. Kim; Michelle Maynard; Wei Hu; Qiongfang Cao; Michael Sheets; Douglas Wilson; Kevin J. Wilson; Lucian DiPietro; Paul Fleming; Michael Palmer; Mimi I. Hu; Lori J. Wirth; Marcia S. Brose; Sai-Hong Ignatius Ou; Matthew H. Taylor; Elena Garralda; Stephen D. Miller; Beni B. Wolf; Christoph Lengauer; Timothy Guzi; Erica Evans

The receptor tyrosine kinase rearranged during transfection (RET) is an oncogenic driver activated in multiple cancers, including non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC), and papillary thyroid cancer. No approved therapies have been designed to target RET; treatment has been limited to multikinase inhibitors (MKI), which can have significant off-target toxicities and limited efficacy. BLU-667 is a highly potent and selective RET inhibitor designed to overcome these limitations. In vitro, BLU-667 demonstrated ≥10-fold increased potency over approved MKIs against oncogenic RET variants and resistance mutants. In vivo, BLU-667 potently inhibited growth of NSCLC and thyroid cancer xenografts driven by various RET mutations and fusions without inhibiting VEGFR2. In first-in-human testing, BLU-667 significantly inhibited RET signaling and induced durable clinical responses in patients with RET-altered NSCLC and MTC without notable off-target toxicity, providing clinical validation for selective RET targeting.Significance: Patients with RET-driven cancers derive limited benefit from available MKIs. BLU-667 is a potent and selective RET inhibitor that induces tumor regression in cancer models with RET mutations and fusions. BLU-667 attenuated RET signaling and produced durable clinical responses in patients with RET-altered tumors, clinically validating selective RET targeting. Cancer Discov; 8(7); 836-49. ©2018 AACR.See related commentary by Iams and Lovly, p. 797This article is highlighted in the In This Issue feature, p. 781.


Cancer Research | 2016

Abstract 2641: The development of potent, selective RET inhibitors that target both wild-type RET and prospectively identified resistance mutations to multi-kinase inhibitors

Rami Rahal; Erica K. Evans; Wei Hu; Michelle Maynard; Paul Fleming; Lucian Dipietro; Joseph L. Kim; Michael Sheets; Doug Wilson; Kevin J. Wilson; Nicolas Stransky; Jason D. Brubaker; Timothy J. Guzi; Nancy E. Kohl; Christoph Lengauer

Introduction: RET/PTC1 was one of the first gene fusions identified from a solid tumor. In the past 3 years, oncogenic RET fusions have been identified in additional cancer types, most notably NSCLC and colon carcinomas. Activating germline RET mutations are also well established drivers of multiple endocrine neoplasia while somatic RET mutations are the most prevalent alterations in sporadic medullary thyroid cancers. In light of these findings, a number of approved multi-kinase inhibitors (mKIs) with in vitro activity against wild-type (WT) RET, such as cabozantinib, vandetanib, and lenvatinib, have been repurposed for treating RET-driven diseases. We have designed a next-generation inhibitor specifically tailored to target RET, while sparing other closely-related kinases, such as KDR/VEGFR2. Given that secondary mutations are a common resistance mechanism to kinase inhibitors, we prospectively identified resistance mutations that abrogate mKI activity and crafted our RET-selective inhibitors to also target these mutations. The structures of several mKIs bound to RET were analyzed and amino acid substitutions that would disrupt the protein-inhibitor interactions were predicted. In vitro resistance screens with cabozantinib, ponatinib, and vandetanib in a Ba/F3 KIF5B-RET cell line were conducted and confirmed these predictions. The proprietary Blueprint Medicines’ kinase inhibitor library was used to identify inhibitors of WT and resistance mutant RET as starting points for lead optimization. Results: Both structural analysis and in vitro screening revealed that only a handful of positions within the RET kinase domain enable resistance mutations to mKIs, suggesting a narrow mutational spectrum. Using our library of kinase inhibitors, we identified potent, orally bioavailable inhibitors of RET that target both the WT and resistance mutants in KIF5B-RET-driven cell lines while sparing the majority of the kinome. These inhibitors also suppressed the proliferation of thyroid cancer cell lines harboring RET fusions or activating RET mutations and demonstrated in vivo activity in xenograft models. Our analysis of the PK-PD-efficacy relationship revealed that over 70% target suppression is required for maximal efficacy. Finally, our RET-selective inhibitors induced dose-dependent tumor growth inhibition in a KIF5B-RET fusion positive lung adenocarcinoma PDX model at well-tolerated doses, further validating RET fusions as oncogenic drivers in NSCLC. Conclusion: This work describes the identification of potent inhibitors that specifically target WT RET and resistance mutations predicted to arise upon mKI treatment. By sparing kinases with known toxicity profiles, these molecules are predicted to robustly inhibit RET at tolerated doses and may provide patients with RET-driven diseases an opportunity for more durable and effective therapies. Citation Format: Rami Rahal, Erica K. Evans, Wei Hu, Michelle Maynard, Paul Fleming, Lucian DiPietro, Joseph L. Kim, Michael P. Sheets, Doug P. Wilson, Kevin J. Wilson, Nicolas Stransky, Jason D. Brubaker, Timothy Guzi, Nancy E. Kohl, Christoph Lengauer. The development of potent, selective RET inhibitors that target both wild-type RET and prospectively identified resistance mutations to multi-kinase inhibitors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2641.


Cancer Research | 2011

Abstract 4482: Discovery of an irreversible PI3Kα-specific Inhibitor

Lixin Qiao; Mariana Nacht; Michael Sheets; Thia St. Martin; Matthew T. Labenski; Hormoz Mazdiyasni; Zhendong Zhu; Prasoon Chaturvedi; Deepa Bhavsar; Deqiang Niu; William F. Westlin; Russell C. Petter; Juswinder Singh

The PI3K pathway, which regulates cell growth, proliferation and survival, is activated in many types of human tumors by mutational activation of PI3Kα, PTEN inactivation, or activation of upstream receptor tyrosine kinases. Several PI3K inhibitors are currently in clinical development, but most are pan-PI3K inhibitors. Tumor biology data suggests that targeting PI3Kα specifically should be efficacious, and there may be advantages to not disrupting other members of the complex PI3K signaling cascade. Using structure-based drug design (SBDD), we have discovered a series of small molecules that selectively inhibit PI3Kα via the formation of an irreversible covalent bond. In addition to the enhanced pharmacodynamics achieved through permanent silencing of targets, covalent inhibitors also exhibit key advantages in terms of isoform selectivity and translational biomarker opportunities. SBDD was used to design small molecules which bond to an amino acid present uniquely in the α-isoform of PI3K. Mass spectrometry verified covalent bond formation to PI3Kα but not to the other isoforms. PI3K enzyme activity was measured using an HTRF assay. PI3Kα inhibition was evaluated in SKOV-3 cells by measuring P-AktSer473 levels. Washout experiments were performed to assess prolonged duration of action in cells. Effects on cell proliferation were assessed in cell lines bearing different mutations, such as SKOV-3 (PIK3CA H1047R), PC3 (PTEN-null) and others. SKOV-3 xenograft studies were performed in mice to measure P-AktSer473 inhibition and tumor growth inhibition in vivo. A biotinylated covalent probe molecule specific for PI3Kα was used to verify and quantitate target occupancy by the covalent inhibitor, both in vitro and ex vivo. Using trypsin digestion and MS-MS analysis, we confirmed that the designed inhibitors covalently bonded to the protein at the desired amino acid that is unique to PI3Kα. The covalent bonding resulted in potent inhibition of the PI3Kα enzyme activity and inhibition of P-AktSer473 in cells (EC50 Selective irreversible inhibitors of PI3Kα demonstrate prolonged duration of action and activity in vivo. This targeted approach should yield a first-in-class selective covalent PI3Kα inhibitor with clinical advantages. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 4482. doi:10.1158/1538-7445.AM2011-4482

Collaboration


Dive into the Michael Sheets's collaboration.

Researchain Logo
Decentralizing Knowledge