Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Skjøt is active.

Publication


Featured researches published by Michael Skjøt.


ChemBioChem | 2009

Understanding the plasticity of the alpha/beta hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties.

Michael Skjøt; Leonardo De Maria; Robin Chatterjee; Allan Svendsen; Sharnkant A. Patkar; Peter Rahbek Østergaard; Jesper Brask

The best of both worlds. Long molecular dynamics (MD) simulations of Candida antarctica lipase B (CALB) confirmed the function of helix α5 as a lid structure. Replacement of the helix with corresponding lid regions from CALB homologues from Neurospora crassa and Gibberella zeae resulted in new CALB chimeras with novel biocatalytic properties. The figure shows a snapshot from the MD simulation.


Plant Physiology | 2004

A Complementary Bioinformatics Approach to Identify Potential Plant Cell Wall Glycosyltransferase-Encoding Genes

Jack Egelund; Michael Skjøt; Naomi Geshi; Peter Ulvskov; Bent Larsen Petersen

Plant cell wall (CW) synthesizing enzymes can be divided into the glycan (i.e. cellulose and callose) synthases, which are multimembrane spanning proteins located at the plasma membrane, and the glycosyltransferases (GTs), which are Golgi localized single membrane spanning proteins, believed to participate in the synthesis of hemicellulose, pectin, mannans, and various glycoproteins. At the Carbohydrate-Active enZYmes (CAZy) database where e.g. glucoside hydrolases and GTs are classified into gene families primarily based on amino acid sequence similarities, 415 Arabidopsis GTs have been classified. Although much is known with regard to composition and fine structures of the plant CW, only a handful of CW biosynthetic GT genes—all classified in the CAZy system—have been characterized. In an effort to identify CW GTs that have not yet been classified in the CAZy database, a simple bioinformatics approach was adopted. First, the entire Arabidopsis proteome was run through the Transmembrane Hidden Markov Model 2.0 server and proteins containing one or, more rarely, two transmembrane domains within the N-terminal 150 amino acids were collected. Second, these sequences were submitted to the SUPERFAMILY prediction server, and sequences that were predicted to belong to the superfamilies NDP-sugartransferase, UDP-glycosyltransferase/glucogen-phosphorylase, carbohydrate-binding domain, Gal-binding domain, or Rossman fold were collected, yielding a total of 191 sequences. Fifty-two accessions already classified in CAZy were discarded. The resulting 139 sequences were then analyzed using the Three-Dimensional-Position-Specific Scoring Matrix and mGenTHREADER servers, and 27 sequences with similarity to either the GT-A or the GT-B fold were obtained. Proof of concept of the present approach has to some extent been provided by our recent demonstration that two members of this pool of 27 non-CAZy-classified putative GTs are xylosyltransferases involved in synthesis of pectin rhamnogalacturonan II (J. Egelund, B.L. Petersen, A. Faik, M.S. Motawia, C.E. Olsen, T. Ishii, H. Clausen, P. Ulvskov, and N. Geshi, unpublished data).


ChemPhysChem | 2009

Linking Phospholipase Mobility to Activity by Single-Molecule Wide-Field Microscopy

Susana Rocha; James A. Hutchison; Kalina Peneva; Andreas Herrmann; Klaus Müllen; Michael Skjøt; Christian Isak Jørgensen; Allan Svendsen; Frans C. De Schryver; Johan Hofkens; Hiroshi Uji-i

Many of the biological processes taking place in cells are mediated by enzymatic reactions occurring in the cell membrane. Understanding interfacial enzymatic catalysis is therefore crucial to the understanding of cellular function. Unfortunately, a full picture of the overall mechanism of interfacial enzymatic catalysis, and particularly the important diffusion processes therein, remains unresolved. Herein we demonstrate that single-molecule wide-field fluorescence microscopy can yield important new information on these processes. We image phospholipase enzymes acting upon bilayers of their natural phospholipid substrate, tracking the diffusion of thousands of individual enzymes while simultaneously visualising local structural changes to the substrate layer. We study several enzyme types with different affinities and catalytic activities towards the substrate. Analysis of the trajectories of each enzyme type allows us successfully to correlate the mobility of phospholipase with its catalytic activity at the substrate. The methods introduced herein represent a promising new approach to the study of interfacial/heterogeneous catalysis systems.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains

Lauren S. McKee; Maria J. Peña; Artur Rogowski; Adam Jackson; Richard J. Lewis; William S. York; Kristian B. R. M. Krogh; Anders Viksø-Nielsen; Michael Skjøt; Harry J. Gilbert; Jon Marles-Wright

The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated β-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed β-propeller domain and a C-terminal β-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.


Journal of Molecular Biology | 2008

Structural and Mutational Analyses of the Interaction between the Barley alpha-Amylase/Subtilisin Inhibitor and the Subtilisin Savinase Reveal a Novel Mode of Inhibition

Pernille O. Micheelsen; Jitka Vévodová; Leonardo De Maria; Peter Rahbek Østergaard; Esben Peter Friis; Keith S. Wilson; Michael Skjøt

Subtilisins represent a large class of microbial serine proteases. To date, there are three-dimensional structures of proteinaceous inhibitors from three families in complex with subtilisins in the Protein Data Bank. All interact with subtilisin via an exposed loop covering six interacting residues. Here we present the crystal structure of the complex between the Bacillus lentus subtilisin Savinase and the barley alpha-amylase/subtilisin inhibitor (BASI). This is the first reported structure of a cereal Kunitz-P family inhibitor in complex with a subtilisin. Structural analysis revealed that BASI inhibits Savinase in a novel way, as the interacting loop is shorter than loops previously reported. Mutational analysis showed that Thr88 is crucial for the inhibition, as it stabilises the interacting loop through intramolecular interactions with the BASI backbone.


Journal of the American Chemical Society | 2012

Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are “Selected” upon Allosteric Regulation

Nikos S. Hatzakis; Li Wei; Sune K. Jørgensen; Andreas H. Kunding; Pierre-Yves Bolinger; Nicky Ehrlich; Ivan Makarov; Michael Skjøt; Allan Svendsen; Per Hedegård; Dimitrios Stamou

Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate with the enzymes major conformational states and are redistributed in the presence of the regulatory effector. Thus, our data support allosteric regulation of monomeric enzymes to operate via selection of preexisting functional states and not via induction of new ones.


Journal of Biological Chemistry | 2011

Structure and Activity of Paenibacillus Polymyxa Xyloglucanase from Glycoside Hydrolase Family 44.

Antonio Ariza; Jens M. Eklöf; Oliver Spadiut; Wendy A. Offen; Shirley M. Roberts; Werner Besenmatter; Esben Peter Friis; Michael Skjøt; Keith S. Wilson; Harry Brumer; Gideon J. Davies

The enzymatic degradation of plant polysaccharides is emerging as one of the key environmental goals of the early 21st century, impacting on many processes in the textile and detergent industries as well as biomass conversion to biofuels. One of the well known problems with the use of nonstarch (nonfood)-based substrates such as the plant cell wall is that the cellulose fibers are embedded in a network of diverse polysaccharides, including xyloglucan, that renders access difficult. There is therefore increasing interest in the “accessory enzymes,” including xyloglucanases, that may aid biomass degradation through removal of “hemicellulose” polysaccharides. Here, we report the biochemical characterization of the endo-β-1,4-(xylo)glucan hydrolase from Paenibacillus polymyxa with polymeric, oligomeric, and defined chromogenic aryl-oligosaccharide substrates. The enzyme displays an unusual specificity on defined xyloglucan oligosaccharides, cleaving the XXXG-XXXG repeat into XXX and GXXXG. Kinetic analysis on defined oligosaccharides and on aryl-glycosides suggests that both the −4 and +1 subsites show discrimination against xylose-appended glucosides. The three-dimensional structures of PpXG44 have been solved both in apo-form and as a series of ligand complexes that map the −3 to −1 and +1 to +5 subsites of the extended ligand binding cleft. Complex structures are consistent with partial intolerance of xylosides in the −4′ subsites. The atypical specificity of PpXG44 may thus find use in industrial processes involving xyloglucan degradation, such as biomass conversion, or in the emerging exciting applications of defined xyloglucans in food, pharmaceuticals, and cellulose fiber modification.


PLOS ONE | 2013

Mechanism of Protein Kinetic Stabilization by Engineered Disulfide Crosslinks

Inmaculada Sanchez-Romero; Antonio Ariza; Keith S. Wilson; Michael Skjøt; Jesper Vind; Leonardo De Maria; Lars Kobberoee Skov; Jose M. Sanchez-Ruiz

The impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the properties of sparsely-populated, partially-unfolded intermediates. Here we report the successful design, on the basis of high temperature molecular-dynamics simulations, of six thermodynamically and kinetically stabilized variants of phytase from Citrobacter braakii (a biotechnologically important enzyme) with one, two or three engineered disulfides. Activity measurements and 3D crystal structure determination demonstrate that the engineered crosslinks do not cause dramatic alterations in the native structure. The inactivation kinetics for all the variants displays a strongly non-Arrhenius temperature dependence, with the time-scale for the irreversible denaturation process reaching a minimum at a given temperature within the range of the denaturation transition. We show this striking feature to be a signature of a key role played by a partially unfolded, intermediate state/ensemble. Energetic and mutational analyses confirm that the intermediate is highly unfolded (akin to a proposed critical intermediate in the misfolding of the prion protein), a result that explains the observed kinetic stabilization. Our results provide a rationale for the kinetic-stability consequences of disulfide-crosslink engineering and an experimental methodology to arrive at energetic/structural descriptions of the sparsely populated and elusive intermediates that play key roles in irreversible protein denaturation.


Journal of Biotechnology | 2008

High-level expression of the native barley α-amylase/subtilisin inhibitor in Pichia pastoris

Pernille Ollendorff Micheelsen; Peter Rahbek Østergaard; Lene Lange; Michael Skjøt

An expression system for high-level expression of the native Hordeum vulgare alpha-amylase/subtilisin inhibitor (BASI) has been developed in Pichia pastoris, using the methanol inducible alcohol oxidase 1 (AOX1) promoter. To optimize expression, two codon-optimized coding regions have been designed and expressed alongside the wild-type coding region. To ensure secretion of the native mature protein, a truncated version of the alpha mating factor secretion signal from Saccharomyces cerevisiae was used. In order to be able to compare expression levels from different clones, single insertion transformants generated by gene replacement of the AOX1 gene was selected by PCR screening. Following methanol induction, expression levels reached 125 mgL(-1) from the wild-type coding region while expression from the two codon-optimized variants reached 65 and 125 mgL(-1), respectively. The protein was purified and characterized by Edman degradation, liquid chromatography mass spectrometry and insoluble blue starch assay, and was shown to possess the same characteristics as wild-type protein purified from barley grains.


Computational and structural biotechnology journal | 2015

Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase.

Leonardo De Maria; Mats H. M. Olsson; Lars Lehmann Hylling Christensen; Michael Skjøt; Peter Westh; Jan H. Jensen; Leila Lo Leggio

New variants of β-1,4-galactanase from the mesophilic organism Aspergillus aculeatus were designed using the structure of β-1,4-galactanase from the thermophile organism Myceliophthora thermophila as a template. Some of the variants were generated using PROPKA 3.0, a validated pKa prediction tool, to test its usefulness as an enzyme design tool. The PROPKA designed variants were D182N and S185D/Q188T, G104D/A156R. Variants Y295F and G306A were designed by a consensus approach, as a complementary and validated design method. D58N was a stabilizing mutation predicted by both methods. The predictions were experimentally validated by measurements of the melting temperature (Tm) by differential scanning calorimetry. We found that the Tm is elevated by 1.1 °C for G306A, slightly increased (in the range of 0.34 to 0.65 °C) for D182N, D58N, Y295F and unchanged or decreased for S185D/Q188T and G104D/A156R. The Tm changes were in the range predicted by PROPKA. Given the experimental errors, only the D58N and G306A show significant increase in thermodynamic stability. Given the practical importance of kinetic stability, the kinetics of the irreversible enzyme inactivation process were also investigated for the wild-type and three variants and found to be biphasic. The half-lives of thermal inactivation were approximately doubled in G306A, unchanged for D182N and, disappointingly, a lot lower for D58N. In conclusion, this study tests a new method for estimating Tm changes for mutants, adds to the available data on the effect of substitutions on protein thermostability and identifies an interesting thermostabilizing mutation, which may be beneficial also in other galactanases.

Collaboration


Dive into the Michael Skjøt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Ulvskov

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Øbro

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge