Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Steinert is active.

Publication


Featured researches published by Michael Steinert.


Optics Letters | 2012

Controlling plasmonic hot spots by interfering Airy beams.

Angela E. Klein; Alexander Minovich; Michael Steinert; Norik Janunts; Andreas Tünnermann; Dragomir N. Neshev; Yuri S. Kivshar; Thomas Pertsch

We predict and demonstrate the generation of a plasmonic hot spot on the surface of a metal film by the interference of two Airy surface plasmons. We show that the position of the hot spot can be controlled by the distance between the excitation gratings as well as by the phase front of the initial excitation. The observed effect constitutes a planar analogy to Airy beam autofocusing and offers new opportunities for spatially resolved surface plasmon sensing and optical surface tweezers.


Optics Letters | 2016

High speed and high resolution table-top nanoscale imaging.

G. K. Tadesse; R. Klas; S. Demmler; Steffen Hädrich; I. Wahyutama; Michael Steinert; Christian Spielmann; M. Zürch; Thomas Pertsch; Andreas Tünnermann; Jens Limpert; Jan Rothhardt

We present a table-top coherent diffractive imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth, and high degree of spatial coherence allow for ultrahigh subwavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 15 nm, close to the actual Abbe limit of 12 nm, which is the highest resolution achieved from any table-top extreme ultraviolet (XUV) or x-ray microscope. In addition, sub-30 nm resolution was achieved with only 3 s of integration time, bringing live diffractive imaging and three-dimensional tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nanometer resolutions are in reach and will find applications in many areas of science and technology.


Nano Letters | 2014

Polarization-Resolved Near-Field Mapping of Plasmonic Aperture Emission by a Dual-SNOM System

Angela E. Klein; Norik Janunts; Michael Steinert; Andreas Tünnermann; Thomas Pertsch

We study the polarization characteristics of light emission and collection in the near field by the tips of a Dual-SNOM (two scanning near-field optical microscopes) setup. We find that cantilevered fiber probes can serve as emitters of polarized light, or as polarization-sensitive detectors. The polarization characteristics depend on the fiber type used for tip fabrication. In Dual-SNOM measurements, we demonstrate mapping of different field components of the plasmonic dipole pattern emitted by an aperture probe.


Optical Materials Express | 2015

Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes

Séverine Diziain; Reinhard Geiss; Michael Steinert; Carsten Schmidt; W. K. Chang; Stefan Fasold; Daniel Füßel; Yen-Hung Chen; Thomas Pertsch

We report on self-suspended micro-resonators patterned in Z-cut lithium niobate on insulator substrates. The fabrication technique consists of two single steps, focused ion beam milling for the micro- and nano-structuring and subsequent SiO2 etching for the realization of thin self-suspended membranes. The fabrication process of a free-standing photonic crystal cavity and a suspended micro-disk is described and the linear and nonlinear optical properties of the micro-resonators are investigated at telecommunication wavelengths. The whispering gallery modes of the micro-disk are measured experimentally and compared to an analytical model. The fundamental transverse-electric polarized mode of the photonic crystal cavity is measured and compared to three dimensional finite difference time domain simulations. Second harmonic generation enhancement due to the field confinement in the cavity mode is demonstrated. These results are promising for the use of Z-cut lithium niobate self-suspended membranes as platforms for highly efficient miniaturized photonic devices for telecommunication applications.


Optics Letters | 2010

Plasmonic modes of extreme subwavelength nanocavities

J. Petschulat; Christian Helgert; Michael Steinert; Norbert Bergner; Carsten Rockstuhl; Falk Lederer; Thomas Pertsch; Andreas Tünnermann; Ernst-Bernhard Kley

We study the physics of a new type of subwavelength nanocavities. They are based on U-shaped metal-insulator-metal waveguides supporting the excitation of surface plasmon polaritons. The nanocavity arrays are excited by plane waves at either a normal or oblique incidence. Because of their finite length, discrete modes emerge within the nanocavity. We show that the excitation symmetry with respect to the cavity ends permits the observation of even and odd modes. Our investigations include near- and far-field simulations and predict a strong spectral far-field response of the comparably small nanoresonators. The strong near-field enhancement observed in the cavity at resonance might be suitable to increase the efficiency of nonlinear optical effects and quantum analogies and might facilitate the development of optical elements, such as active plasmonic devices.


conference on lasers and electro optics | 2015

Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching.

Hairun Guo; Binbin Zhou; Michael Steinert; Frank Setzpfandt; Thomas Pertsch; H. P. Chung; Yen-Hung Chen; Morten Bache

Supercontinuum generation (SCG) is most efficient when the solitons can be excited directly at the pump laser wavelength. Quadratic nonlinear waveguides may induce an effective negative Kerr nonlinearity, so temporal solitons can be directly generated in the normal (positive) dispersion regime overlapping with common ultrafast laser wavelengths. There is no need for waveguide dispersion engineering. Here, we experimentally demonstrate SCG in standard lithium niobate (LN) waveguides without quasi-phase matching (QPM), pumped with femtosecond pulses in the normal dispersion regime. The observed large bandwidths (even octave spanning), together with other experimental data, indicate that negative nonlinearity solitons are indeed excited, which is backed up by numerical simulations. The QPM-free design reduces production complexity, extends the maximum waveguide length, and limits undesired spectral resonances. Finally, nonlinear crystals can be used where QPM is inefficient or impossible, which is important for mid-IR SCG. QPM-free waveguides in mid-IR nonlinear crystals can support negative nonlinearity solitons, as these waveguides have a normal dispersion at the emission wavelengths of mid-IR ultrafast lasers.


Optics Express | 2016

Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy

Sören Schmidt; Angela E. Klein; T. Paul; Herbert Gross; Séverine Diziain; Michael Steinert; Alberto da Costa Assafrao; Thomas Pertsch; H. P. Urbach; Carsten Rockstuhl

Aperture based scanning near field optical microscopes are important instruments to study light at the nanoscale and to understand the optical functionality of photonic nanostructures. In general, a detected image is affected by both the transverse electric and magnetic field components of light. The discrimination of the individual field components is challenging as these four field components are contained within two signals in the case of a polarization resolved measurement. Here, we develop a methodology to solve the inverse imaging problem and to retrieve the vectorial field components from polarization and phase resolved measurements. Our methodology relies on the discussion of the image formation process in aperture based scanning near field optical microscopes. On this basis, we are also able to explain how the relative contributions of the electric and magnetic field components within detected images depend on the chosen probe. We can therefore also describe the influence of geometrical and material parameters of individual probes within the image formation process. This allows probes to be designed that are primarily sensitive either to the electric or magnetic field components of light.


Optics Express | 2015

Enhancing resonances of optical nanoantennas by circular gratings.

Jing Qi; Thomas Kaiser; Angela E. Klein; Michael Steinert; Thomas Pertsch; Falk Lederer; Carsten Rockstuhl

Optical plasmonic antennas allow for localizing and enhancing light at the nanoscale. To enhance the application opportunities of optical antennas, their quality factor needs to be substantially improved. Here, we numerically and experimentally demonstrate that the resonance of a dipolar metallic disc antenna can be enhanced by a circular grating that obeys the Bragg condition. The supporting grating effectively collects energy from an extended spatial domain and guides it spectrally-selected into the central antenna, leading to a significantly enhanced field intensity at resonance. Accordingly, the quality factor of the antenna is enhanced by at least five times. The approach can be applied to other plasmonic systems, hence constituting an important ingredient to a future plasmonic tool box.


Applied Physics B | 2016

Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy

Thomas Kaiser; Matthias Falkner; Jing Qi; Angela E. Klein; Michael Steinert; Christoph Menzel; Carsten Rockstuhl; Thomas Pertsch

AbstractWe report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behaviour that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward-propagating Hankel plasmons, which are also excited by the structure, are measured and analysed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy measurements of both structures. All results are in very good agreement with numerical simulations as well as analytical models that are also discussed in our paper.


Scientific Reports | 2018

High resolution XUV Fourier transform holography on a table top

Getnet K. Tadesse; Wilhelm Eschen; Robert Klas; Vinzenz Hilbert; D. Schelle; A. Nathanael; Matthias Zilk; Michael Steinert; Frank Schrempel; Thomas Pertsch; Andreas Tünnermann; Jens Limpert; Jan Rothhardt

Today, coherent imaging techniques provide the highest resolution in the extreme ultraviolet (XUV) and X-ray regions. Fourier transform holography (FTH) is particularly unique, providing robust and straightforward image reconstruction at the same time. Here, we combine two important advances: First, our experiment is based on a table-top light source which is compact, scalable and highly accessible. Second, we demonstrate the highest resolution ever achieved with FTH at any light source (34 nm) by utilizing a high photon flux source and cutting-edge nanofabrication technology. The performance, versatility and reliability of our approach allows imaging of complex wavelength-scale structures, including wave guiding effects within these structures, and resolving embedded nanoscale features, which are invisible for electron microscopes. Our work represents an important step towards real-world applications and a broad use of XUV imaging in many areas of science and technology. Even nanoscale studies of ultra-fast dynamics are within reach.

Collaboration


Dive into the Michael Steinert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Rockstuhl

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge