Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Stigson is active.

Publication


Featured researches published by Michael Stigson.


Environmental Health Perspectives | 2006

Proteomic Evaluation of Neonatal Exposure to 2,2′,4,4′,5-Pentabromodiphenyl Ether

Henrik Alm; Birger Scholz; Celia Fischer; Kim Kultima; Henrik Viberg; Per Eriksson; Lennart Dencker; Michael Stigson

Exposure to the brominated flame retardant 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) during the brain growth spurt disrupts normal brain development in mice and results in disturbed spontaneous behavior in adulthood. The neurodevelopmental toxicity of PBDE-99 has been reported to affect the cholinergic and catecholaminergic systems. In this study we use a proteomics approach to study the early effect of PBDE-99 in two distinct regions of the neonatal mouse brain, the striatum and the hippocampus. A single oral dose of PBDE-99 (12 mg/kg body weight) or vehicle was administered to male NMRI mice on neonatal day 10, and the striatum and the hippocampus were isolated. Using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), we found 40 and 56 protein spots with significantly (p < 0.01) altered levels in the striatum and the hippocampus, respectively. We used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–ToF–MS) to determine the protein identity of 11 spots from the striatum and 10 from the hippocampus. We found that the levels of proteins involved in neurodegeneration and neuroplasticity (e.g., Gap-43/neuromodulin, stathmin) were typically altered in the striatum, and proteins involved in metabolism and energy production [e.g., α-enolase; γ-enolase; ATP synthase, H+ transporting, mitochondrial F1 complex, β subunit (Atp5b); and α-synuclein] were typically altered in the hippocampus. Interestingly, many of the identified proteins have been linked to protein kinase C signaling. In conclusion, we identify responses to early exposure to PBDE-99 that could contribute to persistent neurotoxic effects. This study also shows the usefulness of proteomics to identify potential biomarkers of developmental neurotoxicity of organohalogen compounds.


BMC Neuroscience | 2006

Sex-dependent gene expression in early brain development of chicken embryos

Birger Scholz; Kim Kultima; Anna Mattsson; Jeanette Axelsson; Björn Brunström; Krister Halldin; Michael Stigson; Lennart Dencker

BackgroundDifferentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms.ResultsUsing cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head) that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females) were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA) have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44) encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation.ConclusionIn conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.


Toxicological Sciences | 2009

Valproic acid-induced deregulation in vitro of genes associated in vivo with neural tube defects.

Måns Jergil; Kim Kultima; Anne-Lee Gustafson; Lennart Dencker; Michael Stigson

The utility of an in vitro system to search for molecular targets and markers of developmental toxicity was explored, using microarrays to detect genes susceptible to deregulation by the teratogen valproic acid (VPA) in the pluripotent mouse embryonal carcinoma cell line P19. Total RNA extracted from P19 cells cultured in the absence or presence of 1, 2.5, or 10mM VPA for 1.5, 6, or 24 h was subjected to replicated microarray analysis, using CodeLink UniSet I Mouse 20K Expression Bioarrays. A moderated F-test revealed a significant VPA response for 2972 (p < 10(-3)) array probes (19.4% of the filtered gene list), 421 of which were significant across all time points. In a core subset of VPA target genes whose expression was downregulated (68 genes) or upregulated (125 genes) with high probability (p < 10(-7)) after both 1.5 and 6 h of VPA exposure, there was a significant enrichment of the biological process Gene Ontology term transcriptional regulation among downregulated genes, and apoptosis among upregulated, and two of the downregulated genes (Folr1 and Gtf2i) have a knockout phenotype comprising exencephaly, the major malformation induced by VPA in mice. The VPA-induced gene expression response in P19 cells indicated that approximately 30% of the approximately 200 genes known from genetic mouse models to be associated with neural tube defects may be potential VPA targets, suggestive of a combined deregulation of multiple genes as a possible mechanism of VPA teratogenicity. Gene expression responses related to other known effects of VPA (histone deacetylase inhibition, G(1)-phase cell cycle arrest, induction of apoptosis) were also identified. This study indicates that toxicogenomic responses to a teratogenic compound in vitro may correlate with known in vitro and in vivo effects, and that short-time (< or =6 h) exposures in such an in vitro system could provide a useful component in mechanistic studies and screening tests in developmental toxicology.


Toxicological Sciences | 2011

Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells.

Måns Jergil; Maud Forsberg; Hugh Salter; Kenneth Stockling; Anne-Lee Gustafson; Lennart Dencker; Michael Stigson

Prediction of developmental toxicity in vitro could be based on short-time toxicogenomic endpoints in embryo-derived cell lines. Microarray studies in P19 mouse embryocarcinoma cells and mouse embryos have indicated that valproic acid (VPA), an inducer of neural tube defects, deregulates the expression of many genes, including those critically involved in neural tube development. In this study, we exposed undifferentiated R1 mouse embryonic stem cells to VPA and VPA analogs for 6 h and used CodeLink whole-genome expression microarrays to define VPA-responsive genes correlating with teratogenicity. Compared with the nonteratogenic analog 2-ethyl-4-methylpentanoic acid, VPA and the teratogenic VPA analog (S)-2-pentyl-4-pentynoic acid deregulated a much larger number of genes. Five genes (of ∼2500 array probes correlating with the separation) were sufficient to effectively separate teratogens from nonteratogens. A large fraction of the target genes correlating with teratogenicity are functionally related to embryonic development and morphogenesis, including neural tube formation and closure. Similar responses in R1 were found for most genes previously identified as VPA responsive in P19 and embryos. A subset of target genes was evaluated as candidate markers predictive of potential teratogenicity against a range of known teratogens using TaqMan expression arrays. These marker genes showed a positive predictive value for the teratogens butyrate and trichostatin A, which like VPA and (S)-2-pentyl-4-pentynoic acid are known histone deacetylase (HDAC) inhibitors but not for compounds that are likely to act by other mechanisms. This indicates that HDAC inhibition may be a major mechanism by which VPA induces gene deregulation and possibly teratogenicity.


Journal of Proteome Research | 2010

In Vitro Neurotoxicity of PBDE-99 : Immediate and Concentration-Dependent Effects on Protein Expression in Cerebral Cortex Cells

Henrik Alm; Birger Scholz; Kim Kultima; Anna Nilsson; Per E. Andrén; Mikhail M. Savitski; Åke Bergman; Michael Stigson; Åsa Fex-Svenningsen; Lennart Dencker

Polybrominated diphenyl ethers (PBDEs) are commonly used flame retardants in various consumer products. Pre- and postnatal exposure to congeners of PBDEs disrupts normal brain development in rodents. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to analyze concentration-dependent differences in protein expression in cultured cortical cells isolated from rat fetuses (GD 21) after 24 h exposure to PBDE-99 (3, 10, or 30 microM). Changes on a post-translational level were studied using a 1 h exposure to 30 microM PBDE-99. The effects of 24 h exposure to 3 and 30 microM PBDE-99 on mRNA levels were measured using oligonucleotide microarrays. A total of 62, 46, and 443 proteins were differentially expressed compared to controls after 24 h of exposure to 3, 10, and 30 microM PDBE-99, respectively. Of these, 48, 43, and 238 proteins were successfully identified, respectively. We propose that the biological effects of low-concentration PBDE-99 exposure are fundamentally different than effects of high-concentration exposure. Low-dose PBDE-99 exposure induced marked effects on cytoskeletal proteins, which was not correlated to cytotoxicity or major morphological effects, suggesting that other more regulatory aspects of cytoskeletal functions may be affected. Interestingly, 0.3 and 3 microM, but not 10 or 30 microM increased the expression of phosphorylated (active) Gap43, perhaps reflecting effects on neurite extension processes.


Archives of Biochemistry and Biophysics | 1991

Large disulfide-stabilized proteoglycan complexes are synthesized by the epidermis of axolotl embryos.

Michael Stigson; Lena Kjellén

Proteoglycans (PGs) synthesized by the epidermis during stages crucial to the subepidermal migration of neural crest cells in the trunk of the axolotl (Ambystoma mexicanum, Urodela, Amphibia) embryo were studied. The glycosaminoglycan chains were biosynthetically labeled with [35S]sulfate in vitro during a period corresponding to the onset of migration. After extraction with guanidine HCl, the radiolabeled PGs were separated according to size by molecular-sieve chromatography on Sepharose CL-2B under dissociative conditions. This resulted in the separation of high-molecular-weight PGs, which eluted in the void volume, and low-molecular-weight PGs, eluting in a broad peak with a mean Kav of 0.7. The large PGs were also found to elute in the void volume when chromatographed on a Sephacryl S-1000 column. The low-molecular-weight PGs contained heparan sulfate and chondroitin sulfate (CS) and were not further characterized. The glycosaminoglycan component of the high-molecular-weight PG was completely degraded by chondroitinase ABC, while a large portion was resistant to chondroitinase AC, indicating the presence of dermatan sulfate (DS). These CS/DS chains were of unusually large size (Mr approximately 150,000) as estimated by chromatography on Sepharose CL-4B, relating the elution position to hyaluronan standards. Moreover, the chains were found to have a lower surface charge density than standard CS, and may therefore be undersulfated. After reduction and alkylation the high-molecular-weight PGs were included on both Sepharose CL-2B and Sephacryl S-1000 columns, eluting at Kav 0.2 and 0.4, respectively. Hence, the high-molecular-weight material appears to consist of large PG complexes, stabilized by intermolecular disulfide bonds. A CS/DSPG of similar size as the reduced monomeric form of the high-molecular-weight PG was found in small amounts in the total extract of 35S-labeled material.


Environmental Health Perspectives | 2004

Valproic acid teratogenicity: a toxicogenomics approach

Kim Kultima; Anna-Maja Nyström; Birger Scholz; Anne-Lee Gustafson; Lennart Dencker; Michael Stigson


Neurotoxicology | 2008

Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex.

Henrik Alm; Kim Kultima; Birger Scholz; Anna Nilsson; Per E. Andrén; Åsa Fex-Svenningsen; Lennart Dencker; Michael Stigson


Reproductive Toxicology | 2010

Early transcriptional responses in mouse embryos as a basis for selection of molecular markers predictive of valproic acid teratogenicity

Kim Kultima; Måns Jergil; Hugh Salter; Anne-Lee Gustafson; Lennart Dencker; Michael Stigson


Reproductive Toxicology | 2006

Cadmium-induced gene expression changes in the mouse embryo, and the influence of pretreatment with zinc

Kim Kultima; Estíbaliz L. Fernández; Birger Scholz; Anne-Lee Gustafson; Lennart Dencker; Michael Stigson

Collaboration


Dive into the Michael Stigson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge