Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Stuckelberger is active.

Publication


Featured researches published by Michael Stuckelberger.


Journal of Physical Chemistry Letters | 2015

Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry.

Philipp Löper; Michael Stuckelberger; Bjoern Niesen; Jérémie Werner; Miha Filipič; Soo-Jin Moon; Jun-Ho Yum; Marko Topič; Stefaan De Wolf; Christophe Ballif

The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.


Journal of Applied Physics | 2013

Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency

Michael Stuckelberger; Matthieu Despeisse; G. Bugnon; Jan-Willem Schüttauf; Franz-Josef Haug; Christophe Ballif

Several amorphous silicon (a-Si:H) deposition conditions have been reported to produce films that degrade least under light soaking when incorporated into a-Si:H solar cells. However, a systematic comparison of these a-Si:H materials has never been presented. In the present study, different plasma-enhanced chemical vapor deposition conditions, yielding standard low-pressure VHF a-Si:H, protocrystalline, polymorphous, and high-pressure RF a-Si:H materials, are compared with respect to their optical properties and their behavior when incorporated into single-junction solar cells. A wide deposition parameter space has been explored in the same deposition system varying hydrogen dilution, deposition pressure, temperature, frequency, and power. From the physics of layer growth, to layer properties, to solar cell performance and light-induced degradation, a consistent picture of a-Si:H materials that are currently used for a-Si:H solar cells emerges. The applications of these materials in single-junction, tandem, and triple-junction solar cells are discussed, as well as their deposition compatibility with rough substrates, taking into account aspects of voltage, current, and charge collection. In sum, this contributes to answering the question, “Which material is best for which type of solar cell?”


IEEE Journal of Photovoltaics | 2014

Thin-Film Silicon Triple-Junction Solar Cells on Highly Transparent Front Electrodes With Stabilized Efficiencies up to 12.8%

Jan-Willem Schüttauf; G. Bugnon; Michael Stuckelberger; Simon Hänni; Mathieu Boccard; Matthieu Despeisse; Franz-Josef Haug; Fanny Meillaud; Christophe Ballif

High-efficiency thin-film silicon triple-junction solar cells in p-i-n configuration have been fabricated using amorphous silicon top cell absorber layers, as well as microcrystalline silicon middle and bottom cell absorbers. The triple-junction cells were fabricated on boron doped zinc oxide (ZnO) films with different surface morphologies. To this end, the naturally grown rough ZnO surfaces were flattened using an Ar plasma for three different treatment times. For the shortest time, we achieved a summed current density over 30 mA/cm2 and initial and stabilized conversion efficiencies of 13.5% and 12.5%, respectively. For the medium treatment time, we obtained the highest efficiencies (13.7% initial and 12.8% stable), whereas the longest treatment time led to the highest open-circuit voltage (VOC) of 1.91 V but lower current densities, leading to efficiencies of 12.9% initial and 12.2% stable, respectively. These results were obtained by combining various recently developed features and approaches: first of all, we implemented high-quality μc-Si:H cells with novel buffer layers, leading to very high efficiencies. Second, we applied randomly textured pyramids on the front glass to improve light in-coupling, and finally, we used very thin (~140 nm) top cells that led to a low light-induced degradation (5%-7% relative loss in efficiency).


Journal of Applied Physics | 2014

Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells

Michael Stuckelberger; Yannick Riesen; Matthieu Despeisse; Jan-Willem Schüttauf; Franz-Josef Haug; Christophe Ballif

High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (Voc) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the Voc increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both the p-layer—causing a Voc increase—and in the intrinsic absorber layer, causing a Voc decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed Voc enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.


IEEE Journal of Photovoltaics | 2014

2-D Periodic and Random-on-Periodic Front Textures for Tandem Thin-Film Silicon Solar Cells

Etienne Moulin; M. Steltenpool; Mathieu Boccard; Loïc Garcia; G. Bugnon; Michael Stuckelberger; Elmar Feuser; Bjoern Niesen; Rob van Erven; Jan-Willem Schüttauf; Franz-Josef Haug; Christophe Ballif

We evaluate the performance of thin-film silicon micromorph tandem solar cells deposited on transparent superstrates with embossed micrometer-scale 2-D gratings. Once coated with a thin conductive layer of hydrogenated indium oxide, the textured superstrates can be used as 2-D periodic single-texture front electrodes. Combining these almost loss-free front electrodes with a highly transparent, random self-textured zinc oxide layer (with a thickness ≤ 1 μm) deposited by low-pressure chemical vapor deposition (LPCVD), we obtain double-texture transparent front electrodes. The potential of both single- and double-texture front electrodes is estimated by varying the illumination spectrum of the solar simulator, thereby assessing the maximum efficiency of the tandem cells under optimal current-matching conditions. Our results demonstrate the complementary roles of the 2-D gratings and the LPCVD-ZnO layers in double textures: Cell efficiencies as high as with our state-of-the-art 2.3-μm-thick LPCVD-ZnO front electrode are obtained with significantly reduced ZnO layer thicknesses. Additionally, we show that equivalent efficiencies are also within reach with 2-D periodic single textures if the proper cell configuration is applied.


photovoltaic specialists conference | 2010

Internal electric field and fill factor of amorphous silicon solar cells

Michael Stuckelberger; A. Shah; Janez Krč; Matthieu Despeisse; Fanny Meillaud; Christophe Ballif

The electric field E within the i-layer of hydrogenated amorphous silicon (a-Si:H) solar cells strongly affects the cell performances, and, specifically, the fill factor FF. It governs the drift length Ldrift = μTE which is the crucial parameter limiting charge collection. Ideally, a constant electric field is assumed across the i-layer, whereas in real devices, it is deformed by charged band tail states and dangling bonds. If the i-layer is too thick or has a high density of charged defects, E is deformed and reduced. To determine theoretically the charge states of band tails and dangling bonds, we must know the carrier density profiles within the i-layer. Here, the SunShine program is used to determine carrier generation profiles within i-layers of pin-cells on TCO-covered glass substrates. A classical model for transport and electron/hole capture is employed to determine charge conditions of band tail states and dangling bonds. Results are: (a) charged dangling bonds are predominant for the electric field deformation, affecting the output performance of the cell; (b) this effect is very pronounced especially in degraded cells; (c) it is independent of light intensity; (d) it accounts for performance breakdown of thick, degraded a-Si:H cells. Calculated results are confronted with experimental observations (measurements of FF, collection voltage Vcoll and external quantum efficiency EQE) on pin-type solar cells of 100, 200, 300, and 400 nm thickness produced at IMT Neuchâtel, in initial and degraded state. Ldrift is evaluated via Vcoll, determined here with the method of variable intensity measurements (VIM). Trends observed are explained to full satisfaction.


Journal of Lightwave Technology | 2016

A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning

Stefan Abel; Thilo Stöferle; Chiara Marchiori; Daniele Caimi; Lukas Czornomaz; Michael Stuckelberger; Marilyne Sousa; Bert Jan Offrein; Jean Fompeyrine

Ultrafast and highly efficient optical modulators that are based on the Pockels effect are key components of todays optical communication networks. For the next generation of photonic links, silicon photonic technology is used to establish a new wave of densely integrated optic components. However, this new technology cannot exploit the advantages of using the Pockels effect for optical switching for two reasons: First, silicon does not exhibit any Pockels effect, and second, attempts to combine nonlinear materials with silicon photonics have been cumbersome. Here, we demonstrate a path to integrate barium titanate thin films with strong Pockels coefficients into silicon photonic structures. We highlight various design options, discuss the actual fabrication process, and present experimental results of functional passive and active structures. Examples include couplers and interferometers, as well as active, electrically driven nonvolatilely tunable ring resonators with a tunability of 4 μW/nm. Our results represent a major advancement in the field of ultralow-power silicon photonic switches based on nonlinear oxides, and demonstrate the potential of novel applications based on the hybrid barium titanate-silicon photonic platform.


Journal of Applied Physics | 2016

Temperature dependence of hydrogenated amorphous silicon solar cell performances

Yannick Riesen; Michael Stuckelberger; F.-J. Haug; Christophe Ballif; Nicolas Wyrsch

Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with different deposition conditions. The parameters varied during plasma-enhanced chemical vapor deposition (PE-CVD) were the power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during deposition of the intrinsic absorber layer (i-layer), and the thicknesses of the a-Si:H i-layer and p-type hydrogenated amorphous silicon carbide layer. The results show that the temperature coefficient of the Voc generally varies linearly with the Voc value. The Jsc increases linearly with temperature mainly due to temperature-inducedbandgap reduction and reduced recombination. The FFtemperature dependence is not linear and reaches a maximum at temperatures between 15 °C and 80 °C. Numerical simulations show that this behavior is due to a more positive space-charge induced by the photogenerated holes in the p-layer and to a recombination decrease with temperature. Due to the FF(T) behavior, the Pmpp (T) curves also have a maximum, but at a lower temperature. Moreover, for most series, the cells with the highest power output at STC also have the best energy yield. However, the Pmpp (T) curves of two cells with different i-layer thicknesses cross each other in the operating cell temperature range, indicating that the cell with the highest power output could, for instance, have a lower energy yield than the other cell. A simple energy-yield simulation for the light-soaked and annealed states shows that for Neuchâtel (Switzerland) the best cell at STC also has the best energy yield. However, for a different climate or cell configuration, this may not be true.


IEEE Journal of Photovoltaics | 2014

Class AAA LED-Based Solar Simulator for Steady-State Measurements and Light Soaking

Michael Stuckelberger; Brice Perruche; Maximilien Bonnet-Eymard; Yannick Riesen; Matthieu Despeisse; Franz-Josef Haug; Christophe Ballif

Recent improvements in light-emitting diode (LED) technology has allowed for the use of LEDs for solar simulators with excellent characteristics. In this paper, we present a solar simulator prototype fully based on LEDs. Our prototype has been designed specifically for light soaking and current-voltage (I(V)) measurements of amorphous silicon solar cells. With 11 different LED types, the spectrum from 400 to 750 nm can be adapted to any reference spectrum-such as AM1.5g-with a spectral match corresponding to class A+ or better. The densely packed LEDs provide power densities equivalent to 4 suns for AM1.5g or 5 suns with all LEDs at full power with no concentrator optics. The concept of modular LED blocks and electronics guarantees good uniformity and easy up-scalability. Instead of cost-intensive LED drivers, low-cost power supplies were used with current control, including a feedback loop on in-house developed electronics. This prototype satisfies the highest classifications (better than AAA from 400 to 750 nm) with an illuminated area of 18 cm × 18 cm. For a broader spectrum, the spectral range could be extended by using other types of LEDs or by adding halogen lamps. The space required for this can be saved by using LEDs with higher power or by reducing the maximum light intensity.


photovoltaic specialists conference | 2015

Latest developments in the x-ray based characterization of thin-film solar cells

Michael Stuckelberger; Bradley West; Sebastian Husein; Harvey Guthrey; Mowafak Al-Jassim; Rupak Chakraborty; Tonio Buonassisi; Joerg Maser; Barry Lai; Benjamin Stripe; Volker Rose; Mariana I. Bertoni

We present the latest developments in the characterization of thin-film solar cells based on the combination of elemental mapping from fluorescence measurements using synchrotron x-rays, with beam induced current from electron and x-ray beams. This is a powerful method to directly correlate compositional variations with charge collection efficiency. We compare different approaches for mapping solar cells both in cross-section and in plan view on CIGS and CdTe solar cells. Based on examples from our latest research, we discuss the experimental approaches and highlight the advantages and limitations of each technique. Finally, we present an outlook to experiments that will allow x-ray based characterization to enter new fields of research that were not accessible before.

Collaboration


Dive into the Michael Stuckelberger's collaboration.

Top Co-Authors

Avatar

Christophe Ballif

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley West

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Matthieu Despeisse

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Barry Lai

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Bugnon

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Franz-Josef Haug

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

J. Maser

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Volker Rose

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge