Michael Stürzl
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Stürzl.
Cytokine & Growth Factor Reviews | 1998
Barbara Ensoli; Michael Stürzl
Kaposis sarcoma (KS) is an angioproliferative disease occurring in 4 clinic-epidemiologic forms. Although the AIDS-associated KS (AIDS-KS) is the most aggressive, all forms of KS share the same immunological and histopathological features suggesting common etiological and pathogenic factors. Recent data indicate that at least in early stage KS is not a real sarcoma but an angiohyperplastic-inflammatory lesion mediated by inflammatory cytokines and angiogenic factors, that is triggered or amplified by infection with human herpesvirus-8. In addition, the human immunodeficiency virus type-1 Tat protein appears to be responsible for the higher grade of aggressiveness of AIDS-KS as compared to the other forms of KS. However, given time, reactive KS may progress to a sarcoma as suggested by evidence of monoclonality in late-nodular lesions.
International Journal of Cancer | 1997
Michael Stürzl; Cornelia Blasig; Anneliese Schreier; Frank Neipel; Christine Hohenadl; Emmanuelle Cornali; Gudrun Ascherl; Stefan Esser; Norbert H. Brockmeyer; Marianne Ekman; Ephata E. Kaaya; Erwin Tschachler; Peter Biberfeld
Analysis by polymerase chain reaction (PCR) and serological studies have demonstrated a close association between the novel human herpes virus, Kaposis sarcoma‐associated herpes virus (KSHV) or human herpes virus‐8 (HHV‐8) and the development of Kaposis sarcoma (KS). To clarify the role of HHV‐8 in KS pathogenesis, we investigated at the cellular level by in situ hybridization the expression of a recently described 0.7‐kb HHV‐8‐encoded mRNA (T0.7 mRNA) in KS tissues of different epidemiological origin (AIDS‐KS, African endemic KS and classical KS). The T0.7 mRNA likely encodes a small membrane protein, supposedly expressed in latently HHV‐8‐infected cells. Indeed, we detected T0.7 mRNA in virtually all cells of the cell line BCBL‐1 established from a body cavity‐based lymphoma (BCBL) and latently infected with HHV‐8. In all KS biopsies examined, independent of their epidemiological type, the late‐stage (nodular) KS tissues showed a high level of T0.7 mRNA expression in typical KS spindle cells but also in endothelial cells lining blood vessels, indicating latent HHV‐8 infection of these cells. The presence of T0.7‐expressing cells was restricted to KS tumor tissue and therefore appears to indicate an important role of latent HHV‐8 infection in KS pathogenesis. Int. J. Cancer 72:68–71, 1997.
The EMBO Journal | 2001
Eric Guenzi; Kristin Töpolt; Emmanuelle Cornali; Clara Lubeseder-Martellato; Anita Jörg; Kathrin Matzen; Christian Zietz; Elisabeth Kremmer; Filomena Nappi; Martin Schwemmle; Christine Hohenadl; Giovanni Barillari; Erwin Tschachler; Paolo Monini; Barbara Ensoli; Michael Stürzl
Inflammatory cytokines (IC) activate endothelial cell adhesiveness for monocytes and inhibit endothelial cell growth. Here we report the identification of the human guanylate binding protein‐1 (GBP‐1) as the key and specific mediator of the anti‐proliferative effect of IC on endothelial cells. GBP‐1 expression was induced by IC, downregulated by angiogenic growth factors, and inversely related to cell proliferation both in vitro in microvascular and macrovascular endothelial cells and in vivo in vessel endothelial cells of Kaposis sarcoma. Experimental modulation of GBP‐1 expression demonstrated that GBP‐1 mediates selectively the anti‐proliferative effect of IC, without affecting endothelial cell adhesiveness for monocytes. GBP‐1 anti‐proliferative activity did not affect ERK‐1/2 activation, occurred in the absence of apoptosis, was found to be independent of the GTPase activity and isoprenylation of the molecule, but was specifically mediated by the C‐terminal helical domain of the protein. These results define GBP‐1 as an important tool for dissection of the complex activity of IC on endothelial cells, and detection and specific modulation of the IC‐activated non‐proliferating phenotype of endothelial cells in vascular diseases.
American Journal of Pathology | 1998
Christian Zietz; Matthias Rössle; Christian J. Haas; Andrea Sendelhofert; Astrid Hirschmann; Michael Stürzl; Udo Löhrs
The endothelium is one of the largest cellular compartments of the human body and has a high proliferative potential. However, angiosarcomas are among the rarest malignancies. Despite this interesting contradiction, data on growth and angiogenesis control mechanisms of angiosarcomas are scarce. In this study of 19 angiosarcomas and 10 benign vascular control lesions we investigated the sequence and expression of the p53 tumor suppressor gene and the expression of the mdm-2 proto-oncogene, which is a negative regulator of p53 activity and of the vascular endothelial growth factor (VEGF), whose expression, among other factors, is regulated by the p53/MDM-2 pathway. Ten sarcomas (53%) exhibited clear nuclear p53 protein accumulation. Two of these cases revealed mutations in the sequence-specific DNA binding domain of the p53 gene. Thirteen angiosarcomas (68%) showed an increased amount of MDM-2 protein. Elevated expression of p53 and MDM-2 protein correlated with increased VEGF expression, which was found in nearly 80% of the angiosarcoma cases. Negative or clearly lower immunostaining was obtained in cases from the benign control collective. Only one case of a juvenile hemangioma reached the cutoff value of p53 positivity coincidentally with high VEGF expression. Our data suggest that the p53/ MDM-2 pathway is impaired in about two-thirds (14/ 19) of the angiosarcomas. This may be a key event in the pathogenesis of human angiosarcomas. The increased VEGF expression observed supports this hypothesis.
The EMBO Journal | 2003
Eric Guenzi; Kristin Töpolt; Clara Lubeseder-Martellato; Anita Jörg; Elisabeth Naschberger; Roberto Benelli; Adriana Albini; Michael Stürzl
Expression of the large GTPase guanylate binding protein‐1 (GBP‐1) is induced by inflammatory cytokines (ICs) in endothelial cells (ECs), and the helical domain of the molecule mediates the repression of EC proliferation by ICs. Here we show that the expression of GBP‐1 and of the matrix metalloproteinase‐1 (MMP‐1) are inversely related in vitro and in vivo, and that GBP‐1 selectively inhibits the expression of MMP‐1 in ECs, but not the expression of other proteases. The GTPase activity of GBP‐1 was necessary for this effect, which inhibited invasiveness and tube‐forming capability of ECs in three‐dimensional collagen‐I matrices. A GTPase‐deficient mutant (D184N‐GBP‐1) operated as a transdominant inhibitor of wild‐type GBP‐1 and rescued MMP‐1 expression in the presence of ICs. Expression of D184N‐GBP‐1, as well as paracrine supplementation of MMP‐1, restored the tube‐forming capability of ECs in the presence of wild‐type GBP‐1. The latter finding indicated that the inhibition of capillary formation is specifically due to the repression of MMP‐1 expression by GBP‐1, and is not affected by the anti‐proliferative activity of the helical domain of GBP‐1. These findings substantiate the role of GBP‐1 as a major regulator of the anti‐angiogenic response of ECs to ICs.
American Journal of Pathology | 2002
Clara Lubeseder-Martellato; Eric Guenzi; Anita Jörg; Kristin Töpolt; Elisabeth Naschberger; Elisabeth Kremmer; Christian Zietz; Erwin Tschachler; Peter Hutzler; Martin Schwemmle; Kathrin Matzen; Thomas Grimm; Barbara Ensoli; Michael Stürzl
During angiogenesis and inflammatory processes, endothelial cells acquire different activation phenotypes, whose identification may help in understanding the complex network of angiogenic and inflammatory interactions in vivo. To this goal we investigated the expression of the human guanylate-binding protein (GBP)-1 that is highly induced by inflammatory cytokines (ICs) and, therefore, may characterize IC-activated cells. Using a new rat monoclonal antibody raised against GBP-1, we show that GBP-1 is a cytoplasmic protein and that its expression in endothelial cells is selectively induced by interferon-gamma, interleukin-1alpha, interleukin-1beta, or tumor necrosis factor-alpha, but not by other cytokines, chemokines, or growth factors. Moreover, we found that GBP-1 expression is highly associated with vascular endothelial cells as confirmed by the simultaneous detection of GBP-1 and the endothelial cell-associated marker CD31 in a broad range of human tissues. Notably, GBP-1 expression was undetectable in the skin, but it was highly induced in vessels of skin diseases with a high-inflammatory component including psoriasis, adverse drug reactions, and Kaposis sarcoma. These results indicate that GBP-1 is a novel cellular activation marker that characterizes the IC-activated phenotype of endothelial cells.
Nature Medicine | 2012
Alexander Hahn; Johanna K. Kaufmann; Effi Wies; Elisabeth Naschberger; Julia Panteleev-Ivlev; Katharina Schmidt; Angela Holzer; Martin Schmidt; Jin Chen; Simone König; Armin Ensser; Jinjong Myoung; Norbert H. Brockmeyer; Michael Stürzl; Bernhard Fleckenstein; Frank Neipel
Kaposis sarcoma–associated herpesvirus (KSHV) is the causative agent of Kaposis sarcoma, a highly vascularized tumor originating from lymphatic endothelial cells, and of at least two different B cell malignancies. A dimeric complex formed by the envelope glycoproteins H and L (gH-gL) is required for entry of herpesviruses into host cells. We show that the ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH-gL. EphA2 co-precipitated with both gH-gL and KSHV virions. Infection of human epithelial cells with a GFP-expressing recombinant KSHV strain, as measured by FACS analysis, was increased upon overexpression of EphA2. Antibodies against EphA2 and siRNAs directed against EphA2 inhibited infection of endothelial cells. Pretreatment of KSHV with soluble EphA2 resulted in inhibition of KSHV infection by up to 90%. This marked reduction of KSHV infection was seen with all the different epithelial and endothelial cells used in this study. Similarly, pretreating epithelial or endothelial cells with the soluble EphA2 ligand ephrinA4 impaired KSHV infection. Deletion of the gene encoding EphA2 essentially abolished KSHV infection of mouse endothelial cells. Binding of gH-gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry. Quantitative RT-PCR and in situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from human Kaposis sarcoma lesions or unaffected human lymphatic endothelium, and in situ in Kaposis sarcoma specimens, respectively. Taken together, our results identify EphA2, a tyrosine kinase with known functions in neovascularization and oncogenesis, as an entry receptor for KSHV.
Advances in Cancer Research | 2001
Michael Stürzl; Christian Zietz; Paolo Monini; Barbara Ensoli
Kaposis sarcoma (KS) develops through discrete inflammatory-angiogenic stages of polyclonal nature (early-stage lesions) to monomorphic nodules of spindle-shaped cells that can be clonal (late-stage lesions) and resemble true sarcomas. Molecular and epidemiological studies indicate that development of KS is tightly associated with infection by the human herpesvirus-8 (HHV-8). However, only individuals with specific conditions of immunodysregulation develop KS. In these individuals the systemic and tissue increase of Th-1-type cytokines (IC) reactivate HHV-8 infection, leading to increased viral load, antibody titers, and an expanded cell tropism that precedes the clinical appearance of KS. Recruitment of the virus into tissues by infected monocytes and other cell types is facilitated by the endothelial cell activation due to IC. In clinical lesions, HHV-8 infection increases with lesion stage and in late-stage lesions most of the spindle cells are latently infected, whereas only few lyrically infected cells are present, suggesting that latent genes may have a role in the transformation of the early inflammatory-hyperplastic lesion into a real sarcoma. The development of tumors, however, is regulated through a multistep process based on the acquisition by cells of several different capabilities leading to malignant growth. Here we review the available data on the expression of HHV-8-encoded genes in primary KS lesions and, in view of their biological activity, analyze their potential function in different steps of tumorigenesis. By this pragmatic approach interesting insights into potential key functions of HHV-8-encoded genes are found and steps of potential cooperativity with other viral factors (HIV-1-Tat) in the pathogenesis of KS are identified.
Cell Host & Microbe | 2015
Jian-jun Wu; Wenwei Li; Yaming Shao; Denis Avey; Bishi Fu; Joseph Gillen; Travis Hand; Siming Ma; Xia Liu; Wendell Miley; Andreas Konrad; Frank Neipel; Michael Stürzl; Denise Whitby; Hong Li; Fanxiu Zhu
Invading viral DNA can be recognized by the host cytosolic DNA sensor, cyclic GMP-AMP (cGAMP) synthase (cGAS), resulting in production of the second messenger cGAMP, which directs the adaptor protein STING to stimulate production of type I interferons (IFNs). Although several DNA viruses are sensed by cGAS, viral strategies targeting cGAS are virtually unknown. We report here that Kaposis sarcoma-associated herpesvirus (KSHV) ORF52, an abundant gammaherpesvirus-specific tegument protein, subverts cytosolic DNA sensing by directly inhibiting cGAS enzymatic activity through a mechanism involving both cGAS binding and DNA binding. Moreover, ORF52 homologs in other gammaherpesviruses also inhibit cGAS activity and similarly bind cGAS and DNA, suggesting conserved inhibitory mechanisms. Furthermore, KSHV infection evokes cGAS-dependent responses that can limit the infection, and an ORF52 null mutant exhibits increased cGAS signaling. Our findings reveal a mechanism through which gammaherpesviruses antagonize host cGAS DNA sensing.
Biochemical Journal | 2004
Elisabeth Naschberger; Thomas Werner; Ana B. Vicente; Eric Guenzi; Kristin Töpolt; René Leubert; Clara Lubeseder-Martellato; Peter J. Nelson; Michael Stürzl
The large GTPase GBP-1 (guanylate-binding protein-1) is a major IFN-gamma (interferon-gamma)-induced protein with potent anti-angiogenic activity in endothelial cells. An ISRE (IFN-alpha-stimulated response element) is necessary and sufficient for the induction of GBP-1 expression by IFN-gamma. Recently, we have shown that in vivo GBP-1 expression is strongly endothelial-cell-associated and is, in addition to IFN-gamma, also activated by interleukin-1beta and tumour necrosis factor-alpha, both in vitro and in vivo [Lubeseder-Martellato, Guenzi, Jörg, Töpolt, Naschberger, Kremmer, Zietz, Tschachler, Hutzler, Schwemmle et al. (2002) Am. J. Pathol. 161, 1749-1759; Guenzi, Töpolt, Cornali, Lubeseder-Martellato, Jörg, Matzen, Zietz, Kremmer, Nappi, Schwemmle et al. (2001) EMBO J. 20, 5568-5577]. In the present study, we identified a NF-kappaB (nuclear factor kappaB)-binding motif that, together with ISRE, is required for the induction of GBP-1 expression by interleukin-1beta and tumour necrosis factor-alpha. Deactivation of the NF-kappaB motif reduced the additive effects of combinations of these cytokines with IFN-gamma by more than 50%. Importantly, NF-kappaB p50 rather than p65 activated the GBP-1 promoter. The NF-kappaB motif and ISRE were detected in an almost identical spatial organization, as in the GBP-1 promoter, in the promoter regions of various inflammation-associated genes. Therefore both motifs may constitute a cooperative inflammatory cytokine response module that regulates GBP-1 expression. Our findings may open new perspectives for the use of NF-kappaB inhibitors to support angiogenesis in inflammatory diseases including ischaemia.