Michael T. Bethune
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael T. Bethune.
PLOS ONE | 2008
Belén Morón; Michael T. Bethune; Isabel Comino; Hamid Manyani; Marina Ferragud; Manuel Carlos López; Angel Cebolla; Chaitan Khosla; Carolina Sousa
Background and Aims Celiac disease is a permanent intolerance to gluten prolamins from wheat, barley, rye and, in some patients, oats. Partially digested gluten peptides produced in the digestive tract cause inflammation of the small intestine. High throughput, immune-based assays using monoclonal antibodies specific for these immunotoxic peptides would facilitate their detection in food and enable monitoring of their enzymatic detoxification. Two monoclonal antibodies, G12 and A1, were developed against a highly immunotoxic 33-mer peptide. The potential of each antibody for quantifying food toxicity for celiac patients was studied. Methods Epitope preferences of G12 and A1 antibodies were determined by ELISA with gluten-derived peptide variants of recombinant, synthetic or enzymatic origin. Results The recognition sequences of G12 and A1 antibodies were hexameric and heptameric epitopes, respectively. Although G12 affinity for the 33-mer was superior to A1, the sensitivity for gluten detection was higher for A1. This observation correlated to the higher number of A1 epitopes found in prolamins than G12 epitopes. Activation of T cell from gluten digested by glutenases decreased equivalently to the detection of intact peptides by A1 antibody. Peptide recognition of A1 included gliadin peptides involved in the both the adaptive and innate immunological response in celiac disease. Conclusions The sensitivity and epitope preferences of the A1 antibody resulted to be useful to detect gluten relevant peptides to infer the potential toxicity of food for celiac patients as well as to monitor peptide modifications by transglutaminase 2 or glutenases.
PLOS ONE | 2009
Jennifer Ehren; Belén Morón; Edith Martin; Michael T. Bethune; Gary M. Gray; Chaitan Khosla
Background and Aims Celiac sprue is a life-long disease characterized by an intestinal inflammatory response to dietary gluten. A gluten-free diet is an effective treatment for most patients, but accidental ingestion of gluten is common, leading to incomplete recovery or relapse. Food-grade proteases capable of detoxifying moderate quantities of dietary gluten could mitigate this problem. Methods We evaluated the gluten detoxification properties of two food-grade enzymes, aspergillopepsin (ASP) from Aspergillus niger and dipeptidyl peptidase IV (DPPIV) from Aspergillus oryzae. The ability of each enzyme to hydrolyze gluten was tested against synthetic gluten peptides, a recombinant gluten protein, and simulated gastric digests of whole gluten and whole-wheat bread. Reaction products were analyzed by mass spectrometry, HPLC, ELISA with a monoclonal antibody that recognizes an immunodominant gluten epitope, and a T cell proliferation assay. Results ASP markedly enhanced gluten digestion relative to pepsin, and cleaved recombinant α2-gliadin at multiple sites in a non-specific manner. When used alone, neither ASP nor DPPIV efficiently cleaved synthetic immunotoxic gluten peptides. This lack of specificity for gluten was especially evident in the presence of casein, a competing dietary protein. However, supplementation of ASP with DPPIV enabled detoxification of moderate amounts of gluten in the presence of excess casein and in whole-wheat bread. ASP was also effective at enhancing the gluten-detoxifying efficacy of cysteine endoprotease EP-B2 under simulated gastric conditions. Conclusions Clinical studies are warranted to evaluate whether a fixed dose ratio combination of ASP and DPPIV can provide near-term relief for celiac patients suffering from inadvertent gluten exposure. Due to its markedly greater hydrolytic activity against gluten than endogenous pepsin, food-grade ASP may also augment the activity of therapeutically relevant doses of glutenases such as EP-B2 and certain prolyl endopeptidases.
Journal of Pharmacology and Experimental Therapeutics | 2006
Jonathan Gass; Harmit Vora; Michael T. Bethune; Gary M. Gray; Chaitan Khosla
Celiac Sprue is a multifactorial disease characterized by an intestinal inflammatory response to ingested gluten. Proteolytically resistant gluten peptides from wheat, rye, and barley persist in the intestinal lumen and elicit an immune response in genetically susceptible individuals. Here, we demonstrate the in vivo ability of a gluten-digesting protease (“glutenase”) to accelerate the breakdown of a gluten-rich solid meal. The proenzyme form of endoprotease B, isoform 2 from Hordeum vulgare (EP-B2), was orally administered to adult rats with a solid meal containing1gof gluten. Gluten digestion in the stomach and small intestine was monitored as a function of enzyme dose and time by high-performance liquid chromatography and mass spectrometry. In the absence of supplementary EP-B2, gluten was solubilized and proteolyzed to a limited extent in the stomach and was hydrolyzed and assimilated mostly in the small intestine. In contrast, EP-B2 was remarkably effective at digesting gluten in the rat stomach in a dose- and time-dependent fashion. At a 1:25 EP-B2/gluten dose, the gastric concentration of the highly immunogenic 33-mer gliadin peptide was reduced by more than 50-fold within 90 min with no overt signs of toxicity. Evaluation of EP-B2 as an adjunct to diet control is therefore warranted in celiac patients.
PLOS ONE | 2008
Michael T. Bethune; Juan T. Borda; Erin P. Ribka; Michael-Xun Liu; Kathrine Phillippi-Falkenstein; Ronald J. Jandacek; Gaby G. M. Doxiadis; Gary M. Gray; Chaitan Khosla; Karol Sestak
Background and Aims Gluten sensitivity is widespread among humans. For example, in celiac disease patients, an inflammatory response to dietary gluten leads to enteropathy, malabsorption, circulating antibodies against gluten and transglutaminase 2, and clinical symptoms such as diarrhea. There is a growing need in fundamental and translational research for animal models that exhibit aspects of human gluten sensitivity. Methods Using ELISA-based antibody assays, we screened a population of captive rhesus macaques with chronic diarrhea of non-infectious origin to estimate the incidence of gluten sensitivity. A selected animal with elevated anti-gliadin antibodies and a matched control were extensively studied through alternating periods of gluten-free diet and gluten challenge. Blinded clinical and histological evaluations were conducted to seek evidence for gluten sensitivity. Results When fed with a gluten-containing diet, gluten-sensitive macaques showed signs and symptoms of celiac disease including chronic diarrhea, malabsorptive steatorrhea, intestinal lesions and anti-gliadin antibodies. A gluten-free diet reversed these clinical, histological and serological features, while reintroduction of dietary gluten caused rapid relapse. Conclusions Gluten-sensitive rhesus macaques may be an attractive resource for investigating both the pathogenesis and the treatment of celiac disease.
Methods in Enzymology | 2012
Michael T. Bethune; Chaitan Khosla
Celiac sprue is an inflammatory disease of the small intestine caused by dietary gluten and treated by adherence to a life-long gluten-free diet. The recent identification of immunodominant gluten peptides, the discovery of their cogent properties, and the elucidation of the mechanisms by which they engender immunopathology in genetically susceptible individuals have advanced our understanding of the molecular pathogenesis of this complex disease, enabling the rational design of new therapeutic strategies. The most clinically advanced of these is oral enzyme therapy, in which enzymes capable of proteolyzing gluten (i.e., glutenases) are delivered to the alimentary tract of a celiac sprue patient to detoxify ingested gluten in situ. In this chapter, we discuss the key challenges for discovery and preclinical development of oral enzyme therapies for celiac sprue. Methods for lead identification, assay development, gram-scale production and formulation, and lead optimization for next-generation proteases are described and critically assessed.
PLOS Pathogens | 2008
Michael T. Bethune; Chaitan Khosla
Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the hosts exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights.
PLOS ONE | 2008
Michael T. Bethune; Erin P. Ribka; Chaitan Khosla; Karol Sestak
Background and Aims In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate. Methods Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten. Results Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase. Conclusions Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness.
Journal of Pharmacology and Experimental Therapeutics | 2009
Michael T. Bethune; Matthew Siegel; Samuel Howles-Banerji; Chaitan Khosla
Celiac sprue is a T-cell-mediated enteropathy elicited in genetically susceptible individuals by dietary gluten proteins. To initiate and propagate inflammation, proteolytically resistant gluten peptides must be translocated across the small intestinal epithelium and presented to DQ2-restricted T cells, but the effectors enabling this translocation under normal and inflammatory conditions are not well understood. We demonstrate that a fluorescently labeled antigenic 33-mer gluten peptide is translocated intact across a T84 cultured epithelial cell monolayer and that preincubation of the monolayer with media from gluten-stimulated, celiac patient-derived intestinal T cells enhances the apical-to-basolateral flux of this peptide in a dose-dependent, saturable manner. The permeability-enhancing activity of activated T-cell media is inhibited by blocking antibodies against either interferon-γ or its receptor and is recapitulated using recombinant interferon-γ. At saturating levels of interferon-γ, activated T-cell media does not further increase transepithelial peptide flux, indicating the primacy of interferon-γ as an effector of increased epithelial permeability during inflammation. Reducing the assay temperature to 4°C reverses the effect of interferon-γ but does not reduce basal peptide flux occurring in the absence of interferon-γ, suggesting active transcellular transport of intact peptides is increased during inflammation. A panel of disease-relevant gluten peptides exhibited an inverse correlation between size and transepithelial flux but no apparent sequence constraints. Anti-interferon-γ therapy may mitigate the vicious cycle of gluten-induced interferon-γ secretion and interferon-γ-mediated enhancement of gluten peptide flux but is unlikely to prevent translocation of gluten peptides in the absence of inflammatory conditions.
Current Opinion in Biotechnology | 2017
Michael T. Bethune; Alok V. Joglekar
Immunotherapies are yielding effective treatments for several previously untreatable cancers. Until recently, vaccines and adoptive cell therapies have been designed to target public tumor antigens common to multiple patients rather than private antigens specific to a single patient. Due to the difficulty of identifying public antigens that are expressed exclusively on tumor cells, these studies have yielded both clinical successes and serious immune-related adverse events. Multiple avenues of research now underscore the centrality of tumor-specific mutated private antigens to endogenous anti-tumor immunity. Immunotherapies that target these neoantigens may enable safer and more durable tumor regression, but personalized targeting presents a number of challenges. Foremost among these is to develop processes that accelerate advancement from neoantigen discovery to use of these neoantigens as vaccines or as targets for adoptive cell therapies. Exome sequencing has facilitated discovery of neoantigens for melanoma and other highly mutated cancers. New technologies - possibly proceeding from T cell receptor repertoire sequencing - are needed to identify antigens for cancers with low mutational burden and few neoantigens. In this review, we discuss progress toward personalizing T cell-mediated immunotherapy for cancer as well as challenges going forward.
PLOS ONE | 2010
Kaushiki Mazumdar; Xavier Alvarez; Juan T. Borda; Jason Dufour; Edith Martin; Michael T. Bethune; Chaitan Khosla; Karol Sestak
Background Based on clinical, histopathological and serological similarities to human celiac disease (CD), we recently established the rhesus macaque model of gluten sensitivity. In this study, we further characterized this condition based on presence of anti-tissue transglutaminase 2 (TG2) antibodies, increased intestinal permeability and transepithelial transport of a proteolytically resistant, immunotoxic, 33-residue peptide from α2-gliadin in the distal duodenum of gluten-sensitive macaques. Methodology/Principal Findings Six rhesus macaques were selected for study from a pool of 500, including two healthy controls and four gluten-sensitive animals with elevated anti-gliadin or anti-TG2 antibodies as well as history of non-infectious chronic diarrhea. Pediatric endoscope-guided pinch biopsies were collected from each animals distal duodenum following administration of a gluten-containing diet (GD) and again after remission by gluten-free diet (GFD). Control biopsies always showed normal villous architecture, whereas gluten-sensitive animals on GD exhibited histopathology ranging from mild lymphocytic infiltration to villous atrophy, typical of human CD. Immunofluorescent microscopic analysis of biopsies revealed IgG+ and IgA+ plasma-like cells producing antibodies that colocalized with TG2 in gluten-sensitive macaques only. Following instillation in vivo, the Cy-3-labeled 33-residue gluten peptide colocalized with the brush border protein villin in all animals. In a substantially enteropathic macaque with “leaky” duodenum, the peptide penetrated beneath the epithelium into the lamina propria. Conclusions/Significance The rhesus macaque model of gluten sensitivity not only resembles the histopathology of CD but it also may provide a model for studying intestinal permeability in states of epithelial integrity and disrepair.