Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael T. Colvin is active.

Publication


Featured researches published by Michael T. Colvin.


Journal of the American Chemical Society | 2016

Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils

Michael T. Colvin; Robert Silvers; Qing Zhe Ni; Thach V. Can; Ivan V. Sergeyev; Melanie Rosay; Kevin J. Donovan; Brian Michael; Joseph S. Wall; Sara Linse; Robert G. Griffin

Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimers disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation.


Nature Chemistry | 2010

Radically enhanced molecular recognition

Ali Trabolsi; Niveen M. Khashab; Albert C. Fahrenbach; Douglas C. Friedman; Michael T. Colvin; Karla K. Cotí; Diego Benitez; Ekaterina Tkatchouk; John Carl Olsen; Matthew E. Belowich; Raanan Carmielli; Hussam A. Khatib; William A. Goddard; Michael R. Wasielewski; J. Fraser Stoddart

The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication.


Journal of the American Chemical Society | 2010

Controlling Electron Transfer in Donor-Bridge-Acceptor Molecules Using Cross-Conjugated Bridges

Annie Butler Ricks; Gemma C. Solomon; Michael T. Colvin; Amy M. Scott; Kun Chen; Mark A. Ratner; Michael R. Wasielewski

Photoinitiated charge separation (CS) and recombination (CR) in a series of donor-bridge-acceptor (D-B-A) molecules with cross-conjugated, linearly conjugated, and saturated bridges have been compared and contrasted using time-resolved spectroscopy. The photoexcited charge transfer state of 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) is the donor, and naphthalene-1,8:4,5-bis(dicarboximide) (NI) is the acceptor in all cases, along with 1,1-diphenylethene, trans-stilbene, diphenylmethane, and xanthone bridges. Photoinitiated CS through the cross-conjugated 1,1-diphenylethene bridge is about 30 times slower than through its linearly conjugated trans-stilbene counterpart and is comparable to that observed through the diphenylmethane bridge. This result implies that cross-conjugation strongly decreases the π orbital contribution to the donor-acceptor electronic coupling so that electron transfer most likely uses the bridge σ system as its primary CS pathway. In contrast, the CS rate through the cross-conjugated xanthone bridge is comparable to that observed through the linearly conjugated trans-stilbene bridge. Molecular conductance calculations on these bridges show that cross-conjugation results in quantum interference effects that greatly alter the through-bridge donor-acceptor electronic coupling as a function of charge injection energy. These calculations display trends that agree well with the observed trends in the electron transfer rates.


Journal of the American Chemical Society | 2009

Ultrafast Intersystem Crossing and Spin Dynamics of Photoexcited Perylene-3,4:9,10-bis(dicarboximide) Covalently Linked to a Nitroxide Radical at Fixed Distances

Emilie M. Giacobbe; Qixi Mi; Michael T. Colvin; Boiko Cohen; Charusheela Ramanan; Amy M. Scott; Sina Yeganeh; Tobin J. Marks; Mark A. Ratner; Michael R. Wasielewski

Time-resolved transient optical absorption and EPR (TREPR) spectroscopies are used to probe the interaction of the lowest excited singlet state of perylene-3,4:9,10-bis(dicarboximide) ((1*)PDI) with a stable tert-butylphenylnitroxide radical ((2)BPNO(*)) at specific distances and orientations. The (2)BPNO(*) radical is connected to the PDI with the nitroxide and imide nitrogen atoms either para (1) or meta (3) to one another, as well as through a second intervening p-phenylene spacer (2). Transient absorption experiments on 1-3 reveal that (1*)PDI undergoes ultrafast enhanced intersystem crossing and internal conversion with tau approximately = 2 ps to give structurally dependent 8-31% yields of (3*)PDI. Energy- and electron-transfer quenching of (1*)PDI by (2)BPNO(*) are excluded on energetic and spectroscopic grounds. TREPR experiments at high magnetic fields (3.4 T, 94 GHz) show that the photogenerated three-spin system consists of the strongly coupled unpaired electrons confined to (3*)PDI, which are each weakly coupled to the unpaired electron on (2)BPNO(*) to form excited doublet (D(1)) and quartet (Q) states, which are both spectrally resolved from the (2)BPNO(*) (D(0)) ground state. The initial spin polarizations of D(1) and Q are emissive for 1 and 2 and absorptive for 3, which evolve over time to the opposite spin polarization. The subsequent decays of D(1) and Q to ground-state spin polarize D(0). The rates of polarization transfer depend on the molecular connectivity between PDI and (2)BPNO(*) and can be rationalized in terms of the dependence on molecular structure of the through-bond electronic coupling between these species.


Journal of the American Chemical Society | 2009

Spin-selective charge transport pathways through p-oligophenylene-linked donor-bridge-acceptor molecules.

Amy M. Scott; Tomoaki Miura; Annie Butler Ricks; Zachary E. X. Dance; Emilie M. Giacobbe; Michael T. Colvin; Michael R. Wasielewski

A series of donor-bridge-acceptor (D-B-A) triads have been synthesized in which the donor, 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An), and the acceptor, naphthalene-1,8:4,5-bis(dicarboximide) (NI), are linked by p-oligophenylene (Ph(n)) bridging units (n = 1-5). Photoexcitation of DMJ-An produces DMJ(+*)-An(-*) quantitatively, so that An(-*) acts as a high potential electron donor, which rapidly transfers an electron to NI yielding a long-lived spin-coherent radical ion pair (DMJ(+*)-An-Ph(n)-NI(-*)). The charge transfer properties of 1-5 have been studied using transient absorption spectroscopy, magnetic field effects (MFEs) on radical pair and triplet yields, and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The charge separation (CS) and recombination (CR) reactions exhibit exponential distance dependencies with damping coefficients of beta = 0.35 A(-1) and 0.34 A(-1), respectively. Based on these data, a change in mechanism from superexchange to hopping was not observed for either process in this system. However, the CR reaction is spin-selective and produces the singlet ground state and both (3*)An and (3*)NI. A kinetic analysis of the MFE data shows that superexchange dominates both pathways with beta = 0.48 A(-1) for the singlet CR pathway and beta = 0.35 A(-1) for the triplet CR pathway. MFEs and TREPR experiments were used to measure the spin-spin exchange interaction, 2J, which is directly related to the electronic coupling matrix element for CR, V(CR)(2). The magnitude of 2J also shows an exponential distance dependence with a damping coefficient alpha = 0.36 A(-1), which agrees with the beta values obtained from the distance dependence for triplet CR. These results were analyzed in terms of the bridge molecular orbitals that participate in the charge transport mechanism.


Chemistry: A European Journal | 2011

A Multistate Switchable [3]Rotacatenane

Gokhan Barin; Ali Coskun; Douglas C. Friedman; Mark A. Olson; Michael T. Colvin; Raanan Carmielli; Sanjeev K. Dey; O. Altan Bozdemir; Michael R. Wasielewski; J. Fraser Stoddart

Rotacatenanes are exotic molecular compounds that can be visualized as a unique combination of a [2]catenane and a [2]rotaxane, thereby combining both the circumrotation of the ring component (rotary motion) and the shuttling of the dumbbell component (translational motion) in one structure. Herein, we describe a strategy for the synthesis of a new switchable [3]rotacatenane and the investigation of its switching properties, which rely on the formation of tetrathiafulvalene (TTF) radical π-dimer interactions-namely, the mixed-valence state (TTF(2) )(+.) and the radical-cation dimer state (TTF(+.) )(2) -under ambient conditions. A template-directed approach, based on donor-acceptor interactions, has been developed, resulting in an improved yield of the key precursor [2]catenane, prior to rotacatenation. The nature of the binding between the [2]catenane and selected π-electron-rich templates has been elucidated by using X-ray crystallography and UV/Vis spectroscopy as well as isothermal titration microcalorimetry. The multistate switching mechanism of the [3]rotacatenane has been demonstrated by cyclic voltammetry and EPR spectroscopy. Most notably, the radical-cation dimer state (TTF(+.) )(2) has been shown to enter into an equilibrium by forming the co-conformation in which the two 1,5-dioxynaphthalene (DNP) units co-occupy the cavity of tetracationic cyclophane, thus enforcing the separation of TTF radical-cation dimer (TTF(+.) )(2) . The population ratio of this equilibrium state was found to be 1:1. We believe that this research demonstrates the power of constructing complex molecular machines using template-directed protocols, enabling us to make the transition from simple molecular switches to their multistate variants for enhancing information storage in molecular electronic devices.


Journal of Physical Chemistry A | 2010

Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent TEMPO−Perylene-3,4:9,10-bis(dicarboximide) Dyads: Unusual Spin Polarization Resulting from the Radical−Triplet Interaction

Michael T. Colvin; Emilie M. Giacobbe; Boiko Cohen; Tomoaki Miura; Amy M. Scott; Michael R. Wasielewski

A stable 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was covalently attached at its 4-position to the imide nitrogen atom of a perylene-3,4:9,10-bis(dicarboximide) (PDI) to produce TEMPO-PDI, 1, having a well-defined distance and orientation between TEMPO and PDI. Transient optical absorption experiments in toluene following selective photoexcitation of the PDI chromophore in TEMPO-PDI show that enhanced intersystem crossing occurs with tau = 45 +/- 1 ps, resulting in formation of TEMPO-(3*)PDI, while the same experiment in THF shows that the electron-transfer reaction TEMPO-(1*)PDI --> TEMPO(+*)-PDI(-*) occurs with tau = 1.2 +/- 0.2 ps and thus competes effectively with enhanced intersystem crossing. Time-resolved EPR (TREPR) spectroscopy on the photogenerated three-spin system TEMPO-(3*)PDI in toluene at 295 K initially shows a broad signal assigned to spin-polarized (3*)PDI, which thermalizes at longer times and is accompanied by formation of an emissively polarized TEMPO radical. No signals are observed in THF at 295 K. The TREPR spectrum of TEMPO-(3*)PDI at 85 K in toluene shows an emissive/absorptive signal due to TEMPO and a broad triplet signal due to (3*)PDI having a spin polarization pattern characteristic of overpopulation of its T(0) sublevel. This unusual spin polarization pattern does not result from radical pair intersystem crossing because electron transfer does not occur at 85 K. The observed spin polarization of (3*)PDI cannot be readily explained by mechanisms discussed previously, leading us to propose a new spin polarization mechanism, which requires that the radical and attached triplet are in the weak exchange regime.


Journal of the American Chemical Society | 2015

High Resolution Structural Characterization of A beta(42) Amyloid Fibrils by Magic Angle Spinning NMR

Michael T. Colvin; Robert Silvers; Birgitta Frohm; Yongchao Su; Sara Linse; Robert G. Griffin

The presence of amyloid plaques composed of amyloid beta (Aβ) fibrils is a hallmark of Alzheimer’s disease (AD). The Aβ peptide is present as several length variants with two common alloforms consisting of 40 and 42 amino acids, denoted Aβ1–40 and Aβ1–42, respectively. While there have been numerous reports that structurally characterize fibrils of Aβ1–40, very little is known about the structure of amyloid fibrils of Aβ1–42, which are considered the more toxic alloform involved in AD. We have prepared isotopically 13C/15N labeled AβM01–42 fibrils in vitro from recombinant protein and examined their 13C–13C and 13C–15N magic angle spinning (MAS) NMR spectra. In contrast to several other studies of Aβ fibrils, we observe spectra with excellent resolution and a single set of chemical shifts, suggesting the presence of a single fibril morphology. We report the initial structural characterization of AβM01–42 fibrils utilizing 13C and 15N shift assignments of 38 of the 43 residues, including the backbone and side chains, obtained through a series of cross-polarization based 2D and 3D 13C–13C, 13C–15N MAS NMR experiments for rigid residues along with J-based 2D TOBSY experiments for dynamic residues. We find that the first ∼5 residues are dynamic and most efficiently detected in a J-based TOBSY spectrum. In contrast, residues 16–42 are easily observed in cross-polarization experiments and most likely form the amyloid core. Calculation of ψ and φ dihedral angles from the chemical shift assignments indicate that 4 β-strands are present in the fibril’s secondary structure.


Journal of the American Chemical Society | 2011

Magnetic field-induced switching of the radical-pair intersystem crossing mechanism in a donor-bridge-acceptor molecule for artificial photosynthesis

Michael T. Colvin; Annie Butler Ricks; Amy M. Scott; Amanda L. Smeigh; Raanan Carmieli; Tomoaki Miura; Michael R. Wasielewski

A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate.


Journal of Physical Chemistry A | 2013

Electron Spin Polarization Transfer from Photogenerated Spin-Correlated Radical Pairs to a Stable Radical Observer Spin

Michael T. Colvin; Raanan Carmieli; Tomoaki Miura; Sabine Richert; Daniel M. Gardner; Amanda L. Smeigh; Scott M. Dyar; Sarah M. Mickley Conron; Mark A. Ratner; Michael R. Wasielewski

A series of donor-chromophore-acceptor-stable radical (D-C-A-R(•)) molecules having well-defined molecular structures were synthesized to study the factors affecting electron spin polarization transfer from the photogenerated D(+•)-C-A(-•) spin-correlated radical pair (RP) to the stable radical R(•). Theory suggests that the magnitude of this transfer depends on the spin-spin exchange interaction (2JDA) of D(+•)-C-A(-•). Yet, the generality of this prediction has never been demonstrated. In the D-C-A-R(•) molecules described herein, D is 4-methoxyaniline (MeOAn), 2,3-dihydro-1,4-benzodioxin-6-amine (DioxAn), or benzobisdioxole aniline (BDXAn), C is 4-aminonaphthalene-1,8-dicarboximide, and A is naphthalene-1,8:4,5-bis(dicarboximide) (1A,B-3A,B) or pyromellitimide (4A,B-6A,B). The terminal imide of the acceptors is functionalized with either a hydrocarbon (1A-6A) or a 2,2,6,6-tetramethyl-1-piperidinyloxyl radical (R(•)) (1B-6B). Photoexcitation of C with 416-nm laser pulses results in two-step charge separation to yield D(+•)-C-A(-•)-(R(•)). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy using continuous-wave (CW) microwaves at both 295 and 85 K and pulsed microwaves at 85 K (electron spin-echo detection) was used to probe the initial formation of the spin-polarized RP and the subsequent polarization of the attached R(•) radical. The TREPR spectra show that |2JDA| for D(+•)-C-A(-•) decreases in the order MeOAn(+•) > DioxAn(+•) > BDXAn(+•) as a result of their spin density distributions, whereas the spin-spin dipolar interaction (dDA) remains nearly constant. Given this systematic variation in |2JDA|, electron spin-echo-detected EPR spectra of 1B-6B at 85 K show that the magnitude of the spin polarization transferred from the RP to R(•) depends on |2JDA|.

Collaboration


Dive into the Michael T. Colvin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Griffin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amy M. Scott

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge