Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael T. Griffin is active.

Publication


Featured researches published by Michael T. Griffin.


Journal of Pharmacology and Experimental Therapeutics | 2007

Estimation of Agonist Activity at G Protein-Coupled Receptors: Analysis of M2 Muscarinic Receptor Signaling through Gi/o,Gs, and G15

Michael T. Griffin; Katherine Figueroa; Sarah Liller; Frederick J. Ehlert

We developed novel methods for analyzing the concentration-response curve of an agonist to estimate the product of observed affinity and intrinsic efficacy, expressed relative to that of a standard agonist. This parameter, termed intrinsic relative activity (RAi), is most applicable for the analysis of responses at G protein-coupled receptors. RAi is equivalent to the potency ratios that agonists would exhibit in a hypothetical, highly sensitive assay in which all agonists behave as full agonists, even those with little intrinsic efficacy. We investigated muscarinic responses at the M2 receptor, including stimulation of phosphoinositide hydrolysis through Gα15 in HEK 293T cells, inhibition of cAMP accumulation through Gi in Chinese hamster ovary (CHO) cells, and stimulation of cAMP accumulation through Gs in CHO cells treated with pertussis toxin. The RAi values of carbachol, oxotremorine-M, and the enantiomers of aceclidine were approximately the same in the three assay systems. In contrast, the activity of 4-[[N-[3-chlorophenyl]carbamoy]oxy-2-butynyl]trimethylammonium chloride (McN-A-343) was ∼10-fold greater at M2 receptors coupled to Gα15 in HEK 293T cells compared with M2 receptors coupled to Gi in the same cells or in CHO cells. Our results show that the RAi estimate is a useful measure for quantifying agonist activity across different assay systems and for detecting agonist directed signaling.


Journal of Pharmacology and Experimental Therapeutics | 2009

Selectivity of Agonists for the Active State of M1 to M4 Muscarinic Receptor Subtypes

Katherine Figueroa; Michael T. Griffin; Frederick J. Ehlert

We measured the intrinsic relative activity (RAi) of muscarinic agonists to detect possible selectivity for receptor subtypes and signaling pathways. RAi is a relative measure of the microscopic affinity constant of an agonist for the active state of a GPCR expressed relative to that of a standard agonist. First, we estimated RAi values for a panel of agonists acting at the M4 muscarinic receptor coupled to three distinct G-protein pathways: Gi inhibition of cAMP accumulation, Gs stimulation of cAMP accumulation, and Gα15 stimulation of phosphoinositide hydrolysis. Our results show similar RAi values for each agonist, suggesting that the same active state of the M4 receptor triggers the activation of the three G proteins. We also estimated RAi values for agonists across M1 to M4 muscarinic subtypes stably transfected in Chinese hamster ovary cells. Our results show selectivity of McN-A-343 [4-I-[3-chlorophenyl]carbamoyloxy)-2-butynyltrimethylammnonium chloride] for the M1 and M4 subtypes and selectivity of pilocarpine for the M1 and M3 subtypes. The other agonists tested lacked marked selectivity among M1 to M4 receptors. Finally, we estimated RAi values from published literature on M1, M2, and M3 muscarinic responses and obtained results consistent with our own studies. Our results show that the RAi estimate is a useful receptor-dependent measure of agonist activity.


Biochemical Pharmacology | 1996

Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung

Evette E. Esqueda; Edward H. Gerstin; Michael T. Griffin; Frederick J. Ehlert

The effects of oxotremorine-M (oxo-M), a muscarinic agonist, on cyclic AMP (cAMP) accumulation in slices of the rat peripheral lung were investigated. Oxo-M stimulated cAMP accumulation in a concentration-dependent manner with an EC50 value of 4.2 microM and a maximal effect of 2.4 +/- 0.39-fold over basal. In the presence of forskolin (25 microM), the maximal effect of oxo-M was increased to 14.1 +/- 4.0-fold over basal. Forskolin alone caused a 5.9 +/- 2.2-fold increase in cAMP relative to basal; therefore, the combination of both drugs was more than additive. The effects of oxo-M on cAMP accumulation were unaffected by tetrodotoxin, indicating that the action of oxo-M was not mediated by neuronal release of neurotransmitters. Oxo-M had a small inhibitory effect on cAMP in a homogenate preparation, indicating that the stimulatory response to oxo-M in slices of the lung is not due to direct stimulation of adenylyl cyclase. Characterization of the oxo-M potentiation of forskolin-stimulated cAMP accumulation using different muscarinic antagonists yielded calculated pKB values that agreed with binding affinities for the M3 subtype. Oxo-M elicited phosphoinositide hydrolysis in the lung, and the nature of the antagonism of this response was also consistent with that expected for an M3-mediated response. cAMP accumulation in the presence of oxo-M (100 microM), forskolin (12 microM), or both drugs combined was inhibited by indomethacin (1 microM). These results demonstrate that the M3 receptor stimulates cAMP accumulation and phosphoinositide hydrolysis in the rat peripheral lung, and the mechanism for cAMP stimulation may involve arachidonic acid metabolites.


Biochemical Pharmacology | 2003

Comparison of the pharmacological antagonism of M2 and M3 muscarinic receptors expressed in isolation and in combination.

Michael T. Griffin; Jake Ching-Hsuan Hsu; Darakhshanda Shehnaz; Frederick J. Ehlert

We compared the binding properties of selective muscarinic antagonists with their potencies for antagonizing muscarinic responses in Chinese hamster ovary (CHO) cells expressing M(2) and M(3) muscarinic receptors in combination and in isolation. When measured by the competitive displacement of [3H]N-methylscopolamine binding to CHO cells expressing both M(2) and M(3) muscarinic receptors (CHO M(2)+M(3) cells), the competition curves of the subtype-selective muscarinic antagonists were consistent with a two-site model. One site exhibited binding properties identical to those of CHO M(2) cells, whereas the other site exhibited properties like those of CHO M(3) cells. Oxotremorine-M, a muscarinic agonist, elicited a robust, pertussis toxin-insensitive stimulation of phosphoinositide hydrolysis in both CHO M(3) and CHO M(2)+M(3) cells, but not in CHO M(2) cells. The pharmacological antagonism of the phosphoinositide response exhibited similar properties in both CHO M(3) and CHO M(2)+M(3) cells. Oxotremorine-M elicited a pertussis toxin-sensitive, robust inhibition of forskolin-stimulated cyclic AMP (cAMP) accumulation in both CHO M(2) and CHO M(2)+M(3) cells and a less robust inhibition in CHO M(3) cells. At higher concentrations, oxotremorine-M elicited an increase in cAMP accumulation over the maximal inhibition noted at lower concentrations in both CHO M(3) and CHO M(2)+M(3) cells. Following pertussis toxin treatment, only the stimulatory phase of the cAMP response to oxotremorine-M was observed in CHO M(2), CHO M(3), and CHO M(2)+M(3) cells. The pharmacological antagonism of the cAMP response in CHO M(2)+M(3) cells resembled that expected for a response mediated independently by both M(2) and M(3) receptors.


Journal of Pharmacology and Experimental Therapeutics | 2008

Two-State Models and the Analysis of the Allosteric Effect of Gallamine at the M2 Muscarinic Receptor

Frederick J. Ehlert; Michael T. Griffin

We measured the influence of gallamine on the functional responses and binding properties of selected agonists at the M2 muscarinic receptor and analyzed the data within the context of the allosteric ternary complex model. Our analysis showed that gallamine modified agonist affinity without influencing efficacy. To explain this behavior, we investigated the allosteric ternary complex model at a deeper level of analysis to assess allosterism in terms of the differential affinity of gallamine for ground and active states of the receptor. Our simulations showed that two-state models based on a single orthosteric site for the agonist linked to an allosteric site for gallamine could not account for affinity-only modulation, even if multiple conformations of ground and active states were considered. We also expanded the tandem two-site model (J Biol Chem 275:18836–18844, 2000) within the context of the allosteric ternary complex model and analyzed the resulting hybrid model at the level of receptor states. This model posits that the agonist first binds to a relay site and then shuttles to the activation site to turn on the receptor. If it is assumed that allosterism occurs at the relay site and not the activation site, then this model can account for affinity-only modulation in a manner consistent with the allosteric ternary complex model.


Handbook of experimental pharmacology | 2012

Muscarinic Agonists and Antagonists: Effects on Gastrointestinal Function

Frederick J. Ehlert; Kirk J. Pak; Michael T. Griffin

Muscarinic agonists and antagonists are used to treat a handful of gastrointestinal (GI) conditions associated with impaired salivary secretion or altered motility of GI smooth muscle. With regard to exocrine secretion, the major muscarinic receptor expressed in salivary, gastric, and pancreatic glands is the M₃ with a small contribution of the M₁ receptor. In GI smooth muscle, the major muscarinic receptors expressed are the M₂ and M₃ with the M₂ outnumbering the M₃ by a ratio of at least four to one. The antagonism of both smooth muscle contraction and exocrine secretion is usually consistent with an M₃ receptor mechanism despite the major presence of the M₂ receptor in smooth muscle. These results are consistent with the conditional role of the M₂ receptor in smooth muscle. That is, the contractile role of the M₂ receptor depends on that of the M₃ so that antagonism of the M₃ receptor eliminates the response of the M₂. The physiological roles of muscarinic receptors in the GI tract are consistent with their known signaling mechanisms. Some so-called tissue-selective M₃ antagonists may owe their selectivity to a highly potent interaction with a nonmuscarinic receptor target.


Journal of Pharmacology and Experimental Therapeutics | 2011

Analysis of agonism and inverse agonism in functional assays with constitutive activity: estimation of orthosteric ligand affinity constants for active and inactive receptor states.

Frederick J. Ehlert; Hinako Suga; Michael T. Griffin

We describe a modification of receptor theory for the estimation of observed affinities (Kobs) and relative efficacies of orthosteric ligands in functional assays that exhibit constitutive activity. Our theory includes parameters for the fractions of the occupied receptor population in the active (intrinsic efficacy, ε) and inactive (εi) states and analogous parameters for the fractions of the free receptor population in the active (εsys) and inactive (εi-sys) states. The total stimulus represents the summation of the active states of the free and occupied receptor populations. A modified operational model is developed that expresses the response as a logistic function of the total stimulus. This function includes the standard parameters related to affinity and efficacy (Kobs and τ) as well as a parameter proportional to the activity of the free receptor complex, τsys. Two related parameters are proportional to the fraction of the free (τi-sys) and occupied (τi) receptor populations in the inactive state. We show that the estimates of the affinity constants of orthosteric ligands for the active (Kb) and inactive (Ka) states of the receptor are equivalent to τKobs/τsys and τiKobs/τi-sys, respectively. We verify our method with computer simulation techniques and apply it to the analysis of M2 and M3 muscarinic receptors. Our method is applicable in the analysis of ligand bias in drug discovery programs.


Journal of Pharmacology and Experimental Therapeutics | 2011

Analysis of functional responses at G protein coupled receptors: Estimation of relative affinity constants for the inactive receptor state

Frederick J. Ehlert; Michael T. Griffin; Hinako Suga

We describe a modification of receptor theory that enables the estimation of relative affinity constants for the inactive state of a G protein-coupled receptor. Our approach includes the traditional parameters of observed affinity (Kobs) and efficacy (fraction of ligand-receptor complex in the active state, ε) and introduces the concept of the fraction of the ligand-receptor complex in the inactive state (intrinsic inactivity, εi). The relationship between receptor activation and the ligand concentration is known as the stimulus, and the operational model expresses the response as a logistic function of the stimulus. The latter function includes Kobs and the parameter τ, which is proportional to ε. We introduce the parameter τi, which is proportional to εi. We have previously shown that the product, Kobsτ, of one agonist, expressed relative to that of another (intrinsic relative activity, RAi), is a relative measure of the affinity constant for the active state of the receptor. In this report, we show that the product, Kobsτi, of one agonist, expressed relative to that of another (intrinsic relative inactivity, RIi), is a relative measure of the affinity constant for the inactive state of the receptor. We use computer simulation techniques to verify our analysis and apply our method to the analysis of published data on agonist activity at the M3 muscarinic receptor. Our method should have widespread application in the analysis of agonist bias in drug discovery programs and in the estimation of a more fundamental relative measure of efficacy (RAi/RIi).


Journal of Pharmacological and Toxicological Methods | 2014

Estimation of ligand affinity constants for receptor states in functional studies involving the allosteric modulation of G protein-coupled receptors: implications for ligand bias.

Frederick J. Ehlert; Michael T. Griffin

INTRODUCTION The affinity constants of a ligand for active and inactive states of a receptor ultimately determine its capacity to activate downstream signaling events. In this report, we describe a reverse-engineering strategy for estimating these microscopic constants. METHODS Our approach involves analyzing responses measured downstream in the signaling pathway of a G protein-coupled receptor under conditions of allosteric modulation and reduced receptor expression or partial receptor inactivation. The analysis also yields estimates of the isomerization constant of the unoccupied receptor, the sensitivity constant of the signaling pathway, and the more empirical parameters of the receptor population including the observed affinities and efficacies of allosteric and orthosteric ligands - including inverse agonists - and the efficacy of the unoccupied receptor (i.e., constitutive activity). RESULTS AND DISCUSSION We validate our approach with an analytical proof and by analysis of simulated data. We also use our method to analyze data from the literature. We show that the values of the microscopic constants of orthosteric and allosteric ligands are constant regardless of the allosteric interaction and the nature of the receptor-signaling pathway as long as the same active state mediates the response. Our analysis is useful for quantifying probe-dependent allosteric interactions and the selectivity of agonists for different signaling pathways. Knowing the isomerization constant and sensitivity constant of a signaling pathway in a given cell line or tissue preparation enables future investigators to estimate the affinity constants of agonists for receptor states simply through analysis of their concentration-response curves. Our approach also provides a means of validating in silico estimates of ligand affinity for crystal structures of active and inactive states of the receptor.


Journal of Visualized Experiments | 2011

Quantifying Agonist Activity at G Protein-coupled Receptors

Frederick J. Ehlert; Hinako Suga; Michael T. Griffin

When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (τ). The estimate of τK(obs) of one agonist, divided by that of another, is a relative measure of K(b) (RA(i)). For any receptor exhibiting constitutive activity, it is possible to estimate a parameter proportional to the efficacy of the free receptor complex (τ(sys)). In this case, the K(b) value of an agonist is equivalent to τK(obs)/τ(sys). Our method is useful for determining the selectivity of an agonist for receptor subtypes and for quantifying agonist-receptor signaling through different G proteins.

Collaboration


Dive into the Michael T. Griffin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hinako Suga

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge