Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael T. Sellix is active.

Publication


Featured researches published by Michael T. Sellix.


Current Biology | 2006

Chronic jet-lag increases mortality in aged mice

Alec J. Davidson; Michael T. Sellix; J. Daniel; Shin Yamazaki; Michael Menaker; Gene D. Block

Document S1. Supplemental Experimental ProceduresxDownload (.08 MB ) Document S1. Supplemental Experimental Procedures


American Journal of Physiology-endocrinology and Metabolism | 2008

Estrogen directly modulates circadian rhythms of PER2 expression in the uterus.

Takahiro J. Nakamura; Michael T. Sellix; Michael Menaker; Gene D. Block

Fluctuations in circulating estrogen and progesterone levels associated with the estrous cycle alter circadian rhythms of physiology and behavior in female rodents. Endogenously applied estrogen shortens the period of the locomotor activity rhythm in rodents. We recently found that estrogen implants affect Period (Per) gene expression in the suprachiasmatic nucleus (SCN; central clock) and uterus of rats in vivo. To explore whether estrogen directly influences the circadian clock in the SCN and/or tissues of the reproductive system, we examined the effects of 17beta-estradiol (E(2)) on PER2::LUCIFERASE (PER2::LUC) expression in tissue explant cultures from ovariectomized PER2::LUC knockin mice. E(2) applied to explanted cultures shortened the period of rhythmic PER2::LUC expression in the uterus but did not change the period of PER2::LUC expression in the SCN. Raloxifene, a selective estrogen receptor modulator and known E(2) antagonist in uterine tissues, attenuated the effect of E(2) on the period of the PER2::LUC rhythm in the uterus. These data indicate that estrogen directly affects the timing of the molecular clock in the uterus via an estrogen receptor-mediated response.


Journal of Biological Rhythms | 2010

Circadian organization is governed by extra-SCN pacemakers.

Pinar Pezuk; Jennifer A. Mohawk; Tomoko Yoshikawa; Michael T. Sellix; Michael Menaker

In mammals, a pacemaker in the suprachiasmatic nucleus (SCN) is thought to be required for behavioral, physiological, and molecular circadian rhythms. However, there is considerable evidence that temporal food restriction (restricted feedisng [RF]) and chronic methamphetamine (MA) can drive circadian rhythms of locomotor activity, body temperature, and endocrine function in the absence of SCN. This indicates the existence of extra-SCN pacemakers: the Food Entrainable Oscillator (FEO) and Methamphetamine Sensitive Circadian Oscillator (MASCO). Here, we show that these extra-SCN pacemakers control the phases of peripheral oscillators in intact as well as in SCN-ablated PER2::LUC mice. MA administration shifted the phases of SCN, cornea, pineal, pituitary, kidney, and salivary glands in intact animals. When the SCN was ablated, disrupted phase relationships among peripheral oscillators were reinstated by MA treatment. When intact animals were subjected to restricted feeding, the phases of cornea, pineal, kidney, salivary gland, lung, and liver were shifted. In SCN-lesioned restricted-fed mice, phases of all of the tissues shifted such that they aligned with the time of the meal. Taken together, these data show that FEO and MASCO are strong circadian pacemakers able to regulate the phases of peripheral oscillators.


Steroids | 2010

Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels.

Takahiro J. Nakamura; Michael T. Sellix; Takashi Kudo; Nobuhiro Nakao; Takashi Yoshimura; Shizufumi Ebihara; Christopher S. Colwell; Gene D. Block

Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2::LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes. We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Bmal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression.


Trends in Endocrinology and Metabolism | 2010

Circadian clocks in the ovary

Michael T. Sellix; Michael Menaker

Clock gene expression has been observed in tissues of the hypothalamic-pituitary-gonadal (HPG) axis. Whereas the contribution of hypothalamic oscillators to the timing of reproductive biology is well known, the role of peripheral oscillators like those in the ovary is less clear. Circadian clocks in the ovary might play a role in the timing of ovulation. Disruption of the clock in ovarian cells or desynchrony between ovarian clocks and circadian oscillators elsewhere in the body may contribute to the onset and progression of various reproductive pathologies. In this paper, we review evidence for clock function in the ovary across a number of species and offer a novel perspective into the role of this clock in normal ovarian physiology and in diseases that negatively affect fertility.


The Journal of Neuroscience | 2012

Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators

Michael T. Sellix; Jennifer A. Evans; Tanya L. Leise; Oscar Castanon-Cervantes; DiJon D. Hill; Patrick Delisser; Gene D. Block; Michael Menaker; Alec J. Davidson

Aging produces a decline in the amplitude and precision of 24 h behavioral, endocrine, and metabolic rhythms, which are regulated in mammals by a central circadian pacemaker within the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. Disruption of the circadian system, as experienced during transmeridian travel, can lead to adverse health consequences, particularly in the elderly. To test the hypothesis that age-related changes in the response to simulated jet lag will reflect altered circadian function, we examined re-entrainment of central and peripheral oscillators from young and old PER2::luciferase mice. As in previous studies, locomotor activity rhythms in older mice required more days to re-entrain following a shift than younger mice. At the tissue level, effects of age on baseline entrainment were evident, with older mice displaying earlier phases for the majority of peripheral oscillators studied and later phases for cells within most SCN subregions. Following a 6 h advance of the light:dark cycle, old mice displayed slower rates of re-entrainment for peripheral tissues but a larger, more rapid SCN response compared to younger mice. Thus, aging alters the circadian timing system in a manner that differentially affects the re-entrainment responses of central and peripheral circadian clocks. This pattern of results suggests that a major consequence of aging is a decrease in pacemaker amplitude, which would slow re-entrainment of peripheral oscillators and reduce SCN resistance to external perturbation.


Current Opinion in Neurobiology | 2013

Central control of peripheral circadian oscillators.

Michael Menaker; Zachary C. Murphy; Michael T. Sellix

The suprachiasmatic nucleus of the hypothalamus and at least two other unidentified central pacemakers regulate the temporal structure of a circadian network that involves almost every organ in the body. Phase control is central to the efficient function of this system. Individual circadian oscillators in tissues and organs in the periphery bear adaptive phase relationships to the external light cycle, the central pacemakers and to each other. The known signals that regulate and maintain these phase relationships come from the autonomic nervous system, the pineal and adrenal glands, behavioral cycles of feeding and activity and the rhythm of body temperature. It is likely that there are many unknown signals as well. Disrupting the network can produce severe pathology.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Cold and hunger induce diurnality in a nocturnal mammal

Vincent van der Vinne; Sjaak J. Riede; Jenke A. Gorter; Willem G. Eijer; Michael T. Sellix; Michael Menaker; Serge Daan; Violetta Pilorz; Roelof A. Hut

Significance The circadian system drives daily rhythms in physiology and behavior. Mammals in nature can change their daily activity rhythms, but causes and consequences of this behavioral plasticity are unknown. Here we show that nocturnal mice become diurnal when challenged by cold or hunger. Negative energy balance changes hormonal, physiological and behavioral rhythms without modifying the rhythm of the circadian pacemaker in the suprachiasmatic nucleus. This response is adaptive because activity during daytime warmth and resting in a buffered environment during the cold nighttime generally reduces energy expenditure. This mechanism may explain why nighttime activity in humans generally evokes higher energy uptake and subsequent obesity and metabolic syndrome, as seen in late chronotypes and night shift workers. The mammalian circadian system synchronizes daily timing of activity and rest with the environmental light–dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking. Here we show that a metabolic challenge by cold and hunger induces diurnality in otherwise nocturnal mice. Lowering ambient temperature changes the phase of circadian light–dark entrainment in mice by increasing daytime and decreasing nighttime activity. This effect is further enhanced by simulated food shortage, which identifies metabolic balance as the underlying common factor influencing circadian organization. Clock gene expression analysis shows that the underlying neuronal mechanism is downstream from or parallel to the main circadian pacemaker (the hypothalamic suprachiasmatic nucleus) and that the behavioral phenotype is accompanied by phase adjustment of peripheral tissues. These findings indicate that nocturnal mammals can display considerable plasticity in circadian organization and may adopt a diurnal phenotype when energetically challenged. Our previously defined circadian thermoenergetics hypothesis proposes that such circadian plasticity, which naturally occurs in nocturnal mammals, reflects adaptive maintenance of energy balance. Quantification of energy expenditure shows that diurnality under natural conditions reduces thermoregulatory costs in small burrowing mammals like mice. Metabolic feedback on circadian organization thus provides functional benefits by reducing energy expenditure. Our findings may help to clarify relationships between sleep–wake patterns and metabolic phenotypes in humans.


The Journal of Comparative Neurology | 2002

Antagonism of vasoactive intestinal peptide mRNA in the suprachiasmatic nucleus disrupts the rhythm of FRAs expression in neuroendocrine dopaminergic neurons

Lynnette M. Gerhold; Michael T. Sellix; Marc E. Freeman

This study was designed to determine whether there is a functional relationship between cfos expression in vasoactive intestinal peptide (VIP) ‐containing neurons of the suprachiasmatic nucleus (SCN) and Fos‐related antigens (FRAs) expression in neuroendocrine dopaminergic neurons of the arcuate (ARN) and periventricular (PeVN) nuclei of the hypothalamus. Brains were obtained from ovariectomized (OVX) female rats killed at 12:00 AM, 7:00 AM, 9:00 AM, 12:00 PM, and 7:00 PM (12 hours illumination beginning 6:00 AM). Antibodies against FRAs and tyrosine hydroxylase (TH) identified activated neuroendocrine dopaminergic neurons. Antibodies against cfos and VIP identified activated VIP‐immunoreactive (IR) neurons in the SCN. The proportion of neuroendocrine dopaminergic neurons in the ARN and PeVN expressing FRAs was greatest and equivalent at 7:00 AM, 9:00 AM, 12:00 PM, and 12:00 AM. At 7:00 PM, the proportion of neuroendocrine dopaminergic neurons expressing FRAs was significantly lower than all other time points. In the SCN, a subpopulation of VIP‐IR neurons maximally expressed cfos at 7:00 AM, which decreased through 9:00 AM. cFos was not expressed at 7:00 PM and 12:00 AM in VIP‐IR neurons. Antisense VIP oligonucleotides were injected into the SCN to determine whether attenuation of VIP expression disturbs rhythms in neuroendocrine dopaminergic neuronal activity. OVX rats were infused with either antisense VIP oligonucleotides or scrambled sequence oligonucleotides bilaterally (0.5 μg in 0.5 μl of saline per side) in the SCN. Animals were killed 34 hours (7:00 PM) and 46 hours (7:00 AM) after receiving infusions, and brains were recovered. Administration of antisense VIP oligonucleotides decreased VIP protein expression in the SCN and prevented the decrease in the percentage of neuroendocrine dopaminergic neurons expressing FRAs at 7:00 PM but did not affect FRAs expression at 7:00 AM when compared with animals receiving scrambled oligonucleotides. These data suggest that VIP fibers from the SCN may relay time‐of‐day information to neuroendocrine dopaminergic neurons to inhibit their activity and, thus, initiate prolactin release in the evening. J. Comp. Neurol. 450:135–143, 2002.


Journal of Biological Rhythms | 2015

Circadian Clock Function in the Mammalian Ovary

Michael T. Sellix

Rhythmic events in the female reproductive system depend on the coordinated and synchronized activity of multiple neuroendocrine and endocrine tissues. This coordination is facilitated by the timing of gene expression and cellular physiology at each level of the hypothalamo-pituitary-ovarian (HPO) axis, including the basal hypothalamus and forebrain, the pituitary gland, and the ovary. Central to this pathway is the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) that, through its myriad outputs, provides a temporal framework for gonadotropin release and ovulation. The heart of the timing system, a transcription-based oscillator, imparts SCN pacemaker cells and a company of peripheral tissues with the capacity for daily oscillations of gene expression and cellular physiology. Although the SCN sits comfortably at the helm, peripheral oscillators (such as the ovary) have undefined but potentially critical roles. Each cell type of the ovary, including theca cells, granulosa cells, and oocytes, harbor a molecular clock implicated in the processes of follicular growth, steroid hormone synthesis, and ovulation. The ovarian clock is influenced by the reproductive cycle and diseases that perturb the cycle and/or follicular growth can disrupt the timing of clock gene expression in the ovary. Chronodisruption is known to negatively affect reproductive function and fertility in both rodent models and women exposed to shiftwork schedules. Thus, influencing clock function in the HPO axis with chronobiotics may represent a novel avenue for the treatment of common fertility disorders, particularly those resulting from chronic circadian disruption.

Collaboration


Dive into the Michael T. Sellix's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gene D. Block

University of California

View shared research outputs
Top Co-Authors

Avatar

Marcel Egli

Lucerne University of Applied Sciences and Arts

View shared research outputs
Top Co-Authors

Avatar

Pinar Pezuk

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge