Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Teske is active.

Publication


Featured researches published by Michael Teske.


International Journal of Molecular Sciences | 2015

Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

Laura Roland; Michael Grau; Julia Matena; Michael Teske; Matthias Gieseke; Andreas Kampmann; Martin Beyerbach; Hugo Murua Escobar; Heinz Haferkamp; Nils-Claudius Gellrich; Ingo Nolte

For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.


International Journal of Molecular Sciences | 2015

SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

Julia Matena; Svea Petersen; Matthias Gieseke; Andreas Kampmann; Michael Teske; Martin Beyerbach; Hugo Murua Escobar; Heinz Haferkamp; Nils-Claudius Gellrich; Ingo Nolte

To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.


Polymer Chemistry | 2010

Synthesis, characterization and in vitro degradation of 3D-microstructured poly(ε-caprolactone) resins

Stefan Theiler; Michael Teske; Helmut Keul; Katrin Sternberg; Martin Möller

Poly(e-caprolactone)s of controlled molecular weight and low molecular weight distribution were prepared via anionic ring-opening polymerization using a tetra-functional initiator. The prerequisite for crosslinking was achieved by end-capping of the arms with acrylate groups. Novel biodegradable polyester resins were prepared by crosslinking of the functional polyesters via Michael addition using amino-telechelic poly(tetrahydrofuran). Three-dimensional microstructuring via replica molding shows the potential of this material as substrate for biomedical devices. Thermal and mechanical properties were investigated to characterize the polyester resins, accelerated in vitro degradation studies were carried out in a Sorensen buffer at pH 7.4 and 60 °C for up to 77 days. At different time intervals, the mass loss of the resins and the pH values of the buffer were determined, degradation products were investigated by means of NMR, SEC and ESI-MS and morphology of the degraded resins was checked via scanning electron microscopy. Compared to linear poly(e-caprolactone) the degradation rate of all resins is higher, showing a mass loss of 50% within 77 days.


PLOS ONE | 2015

Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity.

Andreas Rudolph; Michael Teske; Sabine Illner; Volker Kiefel; Katrin Sternberg; Niels Grabow; Andreas Wree; Marina Hovakimyan

Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo.


International Journal of Molecular Sciences | 2015

Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

Julia Matena; Svea Petersen; Matthias Gieseke; Michael Teske; Martin Beyerbach; Andreas Kampmann; Hugo Murua Escobar; Nils-Claudius Gellrich; Heinz Haferkamp; Ingo Nolte

Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating.


Journal of Chemistry | 2013

Development and In Vitro Characterization of Hyaluronic Acid-Based Coatings for Implant-Associated Local Drug Delivery Systems

Svea Petersen; Sebastian Kaule; Michael Teske; Ingo Minrath; Klaus-Peter Schmitz; Katrin Sternberg

The development of drug-eluting coatings based on hyaluronic acid (HA) is especially promising for implant-associated local drug delivery (LDD) systems, whose implantation provokes high insertion forces, as, for instance, cochlear implants or drug-coated balloons (DCB). The lubricious character of HA can then reduce the coefficient of friction and serve as drug reservoir simultaneously. In this context, we investigated several plasma- and wet-chemical methods for the deposition of HA-based coatings with LDD function on polyamide 12 as a model implant surface, conventionally used for DCB. In contrast to aminosilane, epoxy silane surface layers allowed the covalent attachment of a smooth and uniform HA base layer, which provided good adherence of further HA layers deposited by manual dip coating at a subsequent processing stage. The applied HA-crosslinking procedure during dip coating influences the transfer and release of paclitaxel, which could be reproducibly incorporated via infiltration. While crosslinking with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride provided HA coatings on DCB, which allowed for an efficient paclitaxel transfer upon expansion in a vessel model, crosslinking with glutardialdehyde resulted in a slower drug release being more appropriate for implants with longer residence time in the body. The developed HA coating is hence well suited for spontaneous and sustained LDD.


Journal of Materials Science: Materials in Medicine | 2014

Chemical activation and changes in surface morphology of poly(ε-caprolactone) modulate VEGF responsiveness of human endothelial cells

Thilo Storm; Katharina Wulf; Michael Teske; Marian Löbler; Günther Kundt; Frank Luderer; Klaus-Peter Schmitz; Katrin Sternberg; Marina Hovakimyan

The high degree of clinical routine in percutaneous transluminal coronary angioplasty (PTCA) with and without stenting has not changed the fact that a large number of coronary heart disease patients are still affected by post-operative complications such as restenosis and thrombosis. Because re-endothelialization is the crucial aspect of wound healing after cardiovascular implant surgery, there is a need for modern biomaterials to aid endothelial cells in their adhesion and functional recovery post-stenting. This study systematically examines the potential of numerous chemical polymer modifications with regard to endothelialization. Poly(ε-caprolactone) (PCL) and its chemically activated forms are investigated in detail, as well as the impact of polymer surface morphology and precoating with matrix protein. Human umbilical vein endothelial cells (HUVECs) are used to characterize endothelial cell responses in terms of in vitro viability and adhesion. As a potential component in drug eluting implants, VEGF is applied as stimulus to boost endothelial cell proliferation on the polymer. In conclusion, plasma chemical activation of PCL combined with VEGF stimulation best enhances in vitro endothelialization. Examining the impact of morphological, chemical and biological modifications of PCL, this study makes an important new contribution towards the existing body of work on polymer endothelialization.


Biomacromolecules | 2013

Enhanced hydrolytic degradation of heterografted polyglycidols: phosphonoethylated monoester and polycaprolactone grafts.

Jens Köhler; Fabian Marquardt; Michael Teske; Helmut Keul; Katrin Sternberg; Martin Möller

Novel biodegradable materials with tunable hydrolytic degradation rate are prepared by grafting of phosphonoethylated polyglycidols with polyesters. First, the hydrolytically degradable polyester grafts are attached to polyglycidols partially grafted with phosphonoethylated diethyl esters through chemical-catalyzed grafting using tin(II) octanoate, then the diethyl ester groups are chemoselectively converted to the corresponding monoester (mixed phosphonate/phosphonic acid) using alkali metal halides. The products are characterized by means of (1)H, (13)C, and (31)P NMR spectroscopy, as well as size-exclusion chromatography and differential scanning calorimetry. The in vitro degradation of the copolymers is studied in phosphate buffered solution at 55 °C. The copolymers are of the same architecture, molecular weight, and crystallinity, only differing in the pendant phosphonate and mixed phosphonate/phosphonic acid groups, respectively. On the basis of mass loss, decrease of the molecular weight, and morphological analysis of the copolymers, the strong impact of mixed phosphonate/phosphonic acid groups on the hydrolytic degradation rate is demonstrated.


Materials | 2016

Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

Laura Roland; Samantha Backhaus; Michael Grau; Julia Matena; Michael Teske; Martin Beyerbach; Hugo Murua Escobar; Heinz Haferkamp; Nils-Claudius Gellrich; Ingo Nolte

Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were used for incorporation into poly-ε-caprolactone (PCL)-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.


Materials | 2017

In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants

Michael Grau; Julia Matena; Michael Teske; Svea Petersen; Pooyan Aliuos; Laura Roland; Niels Grabow; Hugo Murua Escobar; Nils-Claudius Gellrich; Heinz Haferkamp; Ingo Nolte

Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the maintenance of the porous implant structure, it is preferable to be used as a coating material for creating a deposit and release system for growth factors.

Collaboration


Dive into the Michael Teske's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge