Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Todosow is active.

Publication


Featured researches published by Michael Todosow.


Nuclear Technology | 1993

Accelerator-driven subcritical target concept for transmutation of nuclear wastes

Gregory J. Van Tuyle; Michael Todosow; Marcia J. Geiger; A.L. Aronson; Hiroshi Takahashi

A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (neptunium, americium, and curium) and iodine, using a hybrid proton accelerator and subcritical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and the iodine produced by 75 LWRs and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW (electric).


Nuclear Technology | 2005

Use of Thorium in Light Water Reactors

Michael Todosow; A. Galperin; S. Herring; Mujid S. Kazimi; Thomas J. Downar; A. Morozov

Abstract Thorium-based fuels can be used to reduce concerns related to the proliferation potential and waste disposal of the conventional light water reactor (LWR) uranium fuel cycle. The main sources of proliferation potential and radiotoxicity are the plutonium and higher actinides generated during the burnup of standard LWR fuel. A significant reduction in the quantity and quality of the generated Pu can be achieved by replacing the 238U fertile component of conventional low-enriched uranium fuel by 232Th. Thorium can also be used as a way to manage the growth of plutonium stockpiles by burning plutonium, or achieving a net-zero transuranic production, sustainable recycle scenario. This paper summarizes some of the results of recent studies of the performance of thorium-based fuels. It is concluded that the use of heterogeneous U-Th fuel provides higher neutronic potential than a homogeneous fuel. However, in the former case, the uranium portion of the fuel operates at a higher power density, and care is needed to meet the thermal margins and address the higher-burnup implications. In macroheterogeneous designs, the U-Th fuel can yield reduced spent-fuel volume, toxicity, and decay heat. The main advantage of Pu-Th oxide over mixed oxide is better void reactivity behavior even for undermoderated designs, and increased burnup of Pu.


Progress in Nuclear Energy | 1996

Design of particle bed reactors for the space nuclear thermal propulsion program

Hans Ludewig; James R. Powell; Michael Todosow; George Maise; R. Barletta; Donald G. Schweitzer

Abstract This paper describes the design for the Particle Bed Reactor (PBR) that we considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. Four PBR rocket reactor designs were investigated parametrically. They varied in power from 400 MW to 2000 MW, depending on the missions goals. These designs all were characterized by a negative prompt coefficient, due to Doppler feedback, and a moderator feedback coefficient which varied from slightly positive to slightly negative. In all practical designs, we found that the coolant worth was positive, and the thrust/weight ratio was greater than 20.


Nuclear Technology | 2002

Assessment of homogeneous thorium/uranium fuel for pressurized water reactors

Alexander Galperin; E Shwageraus; Michael Todosow

Abstract The homogeneous ThO2-UO2 fuel cycle option for a pressurized water reactor (PWR) of current technology is investigated. The fuel cycle assessment was carried out by calculating the main performance parameters: natural uranium and separative work requirements, fuel cycle cost, and proliferation potential of the spent fuel. These performance parameters were compared with a corresponding slightly enriched (all-U) fuel cycle applied to a PWR of current technology. The main conclusion derived from this comparison is that fuel cycle requirements and fuel cycle cost for the mixed Th/U fuel are higher in comparison with those of the all-U fuel. A comparison and analysis of the quantity and isotopic composition of discharged Pu indicate that the Th/U fuel cycle provides only a moderate improvement of the proliferation resistance. Thus, the overall conclusion of the investigation is that there is no economic justification to introduce Th into a light water reactor fuel cycle as a homogeneous ThO2-UO2 mixture.


Nuclear Technology | 2000

A Pressurized Water Reactor Plutonium Incinerator Based on Thorium Fuel and Seed-Blanket Assembly Geometry

A. Galperin; M. Segev; Michael Todosow

Abstract A pressurized water reactor (PWR) fuel cycle is proposed, whose purpose is the elimination and degradation of weapons-grade plutonium. This Radkowsky thorium-fuel Pu incinerator (RTPI) cycle is based on a core and assemblies retrofittable to a Westinghouse-type PWR. The RTPI assembly, however, is a seed-blanket unit. The seed is supercritical, loaded with Pu-Zr alloy as fuel in a high moderator-to-fuel ratio configuration. The blanket is subcritical, loaded mainly with ThO2, generating and burning 233U in situ. Blankets are loaded once every 6 yr. The seed fuel management scheme is based on three batches, with one-third of the seed modules replaced every year. The core generates 1100 MW(electric). Equilibrium conditions are achieved with the second seed loading. For equilibrium conditions, the annual average of disposed (loaded) Pu is 1210 kg, of which 702 kg are completely eliminated, and 508 kg are discharged, but with significantly degraded isotopics (i.e., with a high percentage of even mass isotopes). Spontaneous fissions per second in a gram of this degraded Pu are ~500, resulting in significantly increased proliferation resistance. Every 6 yr the blanket discharge contains 780 kg of 233U (including 233Pa) and 36 kg of 235U. However, the blankets are initially loaded with an amount of natural uranium selected such that these U fissile isotopes constitute only 12% of the total U discharge, a percentage equivalent to 20% 235U enrichment; hence, both the discharged uranium isotopics satisfy proliferation-resistant criteria. The RTPI control variables, namely, the moderator temperature coefficient, the reactivity per ppm boron, and the control rods worth, are about equal to those of a PWR. The RTPI spent-fuel stockpile ingestion toxicity over a period of ten million years is about the same as the counterpart toxicities of a regular, or a mixed-oxide (MOX), PWR. Compared with known PWR MOX variants, the RTPI is, per 1000 MW(electric) and per annum, a significantly more efficient incinerator of weapons-grade plutonium.


Acta Astronautica | 1999

High performance nuclear thermal propulsion system for near term exploration missions to 100 A.U. and beyond

James R. Powell; John Paniagua; George Maise; Hans Ludewig; Michael Todosow

Abstract A new compact ultra light nuclear reactor engine design termed MITEE (MIniature Reac Tor EnginE) is described. MITEE heats hydrogen propellant to 3000 K, achieving a specific impulse of 1000 seconds and a thrust-to-weight of 10. Total engine mass is 200 kg, including reactor, pump, auxiliaries and a 30% contingency. MITEE enables many types of new and unique missions to the outer solar system not possible with chemical engines. Examples include missions to 100 A.U. in less than 10 years, flybys of Pluto in 5 years, sample return from Pluto and the moons of the outer planets, unlimited ramjet flight in planetary atmospheres, etc. Much of the necessary technology for MITEE already exists as a result of previous nuclear rocket development programs. With some additional development, initial MITEE missions could begin in only 6 years.


Nuclear Technology | 2016

Thorium fuel cycles with externally driven systems

Nicholas R. Brown; Jeffrey J. Powers; Michael Todosow; Massimiliano Fratoni; Hans Ludewig; Eva E. Sunny; Gilad Raitses; A.L. Aronson

Abstract Externally driven subcritical systems are closely associated with thorium, partially because thorium has no naturally occurring fissile isotopes. Both accelerator-driven systems (ADSs) and fusion-driven systems have been proposed. This paper highlights key literature related to the use of thorium in externally driven systems (EDSs) and builds upon this foundation to identify potential roles for EDSs in thorium fuel cycles. In fuel cycles with natural thorium feed and no enrichment, the potential roles are (1) a once-through breed-and-burn fuel cycle and (2) a fissile breeder (mainly 233U) to support a fleet of critical reactors. If enriched uranium is used in the fuel cycle in addition to thorium, EDSs may be used to burn transuranic material. These fuel cycles were evaluated in the recently completed U.S. Department of Energy Evaluation and Screening of nuclear fuel cycle options relative to the current once-through commercial nuclear fuel cycle in the United States. The evaluation was performed with respect to nine specified high-level criteria, such as waste management and resource utilization. Each of these fuel cycles presents significant potential benefits per unit energy generation compared to the present once-through uranium fuel cycle. A parametric study indicates that fusion-fission–hybrid systems perform better than ADSs in some missions due to a higher neutron source relative to the energy required to produce it. However, both potential externally driven technology choices face significant development and deployment challenges. In addition, there are significant challenges associated with the use of thorium fuel and with the transition from a uranium-based fuel cycle to a thorium-based fuel cycle.


Annals of the New York Academy of Sciences | 1997

High-Performance Ultra-light Nuclear Rockets for Near-Earth Objects Interaction Missionsa

James R. Powell; George Maise; Hans Ludewig; Michael Todosow

ABSTRACT: The performance capabilities and technology features of ultra compact nuclear thermal rockets based on very high power density (30 Megawatts per liter) fuel elements are described. Nuclear rockets appear particularly attractive for carrying out missions to investigate or intercept near‐Earth objects (NEOs) that potentially could impact on the Earth. Many of these NEO threats, whether asteroids or comets, have extremely high closing velocities, i.e., tens of kilometers per second relative to the Earth. Nuclear rockets using hydrogen propellant enable flight velocities 2 to 3 times those achievable with chemical rockets, allowing interaction with a potential NEO threat at a much shorter time, and at much greater range. Two versions of an ultra compact nuclear rocket based on very high heat transfer rates are described: the PBR (Particle Bed Reactor), which has undergone substantial hardware development effort, and MITEE (MIniature ReacTor EnginE) which is a design derivative of the PBR. Nominal performance capabilities for the PBR are: thermal power ≃1000 MW thrust ≃45,000 lbsf, and weight ≃500 kg. For MITEE, nominal capabilities are: thermal power 100 MW; thrust ≃4500 lbsf, and weight ≃50 kg. Development of operational PBR/MITEE systems would enable spacecraft launched from LEO (low‐Earth orbit) to investigate intercept NEOs at a range of ∼100 million kilometers in times of ∼30 days.


Archive | 1991

The PHOENIX Concept

G.J. Van Tuyle; Hiroshi Takahashi; Michael Todosow; A.L. Aronson; G.C. Slovik; W.C. Horak

A proposed means of transmuting key long-lived radioactive isotopes, primarily the so-called minor actinides (Np, Am, Cm), using a hybrid proton-accelerator-sub-critical lattice, is described. It is argued that by partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, that some of the most significant challenges in building a waste repository can be substantially reduced. If spent fuel partitioning and transmutation were fully implemented, the time required to reduce the waste stream toxicity below that of uranium ore would be reduced from more than 10,000 years to approximately 30 years. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and much of the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW{sub e}. 14 refs., 29 figs.


Progress in Nuclear Energy | 2001

A roadmap for developing ATW technology: System scenarios & integration

G Van Tuyle; D. Hill; Denis Beller; W Bishop; T Cotton; Phillip J. Finck; W Halsey; J Herezeg; J.S Herring; D Lancaster; J March-Leuba; H Ludewig; T Sanders; B Savage; E Schweitzer; C Smith; L Stewart; Michael Todosow; C.E. Walter

A roadmap has been established for development of ATW Technology. The roadmap defines a reference system along with preferred technologies, which require further development to reduce technical risk, associated deployment scenarios, and a detailed plan of necessary R&D to support implementation of this technology. The potential for international collaboration is discussed which has the potential to reduce the cost of the program. A reference ATW plant design was established to ensure consistent discussion of technical and life cycle cost issues. Over 60 years of operation, a reference ATW plant would process about 10,000 tn of spent nuclear reactor fuel. This is in comparison to the current inventory U.S. of about 40,000 tn of spent fuel and the projected inventory of about 86,000 tn of spent fuel if all currently licensed nuclear power plants run until their license expire. The reference ATW plant was used together with an assumed scenario of no new nuclear plant orders in the U.S. to generate a deployment scenario for ATW. In the R&D roadmap, key technical issues are identified, and timescales are proposed for the resolution of these issues. A key recommendation is that, in the first year of any ATW program, trade studies intended to confirm technology choices and optimization of design be conducted. These studies will then be used to define future R&D. International collaboration will be important in this endeavor.

Collaboration


Dive into the Michael Todosow's collaboration.

Top Co-Authors

Avatar

Hans Ludewig

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James R. Powell

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicholas R. Brown

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A.L. Aronson

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Galperin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Temitope A. Taiwo

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew Worrall

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gilad Raitses

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roald Wigeland

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge