Michael Tombu
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Tombu.
Neuron | 2009
Paul E. Dux; Michael Tombu; Stephenie Harrison; Baxter P. Rogers; Frank Tong; René Marois
Our ability to multitask is severely limited: task performance deteriorates when we attempt to undertake two or more tasks simultaneously. Remarkably, extensive training can greatly reduce such multitasking costs. While it is not known how training alters the brain to solve the multitasking problem, it likely involves the prefrontal cortex given this brain regions purported role in limiting multitasking performance. Here, we show that the reduction of multitasking interference with training is not achieved by diverting the flow of information processing away from the prefrontal cortex or by segregating prefrontal cells into independent task-specific neuronal ensembles, but rather by increasing the speed of information processing in this brain region, thereby allowing multiple tasks to be processed in rapid succession. These results not only reveal how training leads to efficient multitasking, they also provide a mechanistic account of multitasking limitations, namely the poor speed of information processing in human prefrontal cortex.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Michael Tombu; Christopher L. Asplund; Paul E. Dux; Douglass Godwin; Justin W. Martin; René Marois
Human information processing is characterized by bottlenecks that constrain throughput. These bottlenecks limit both what we can perceive and what we can act on in multitask settings. Although perceptual and response limitations are often attributed to independent information processing bottlenecks, it has recently been suggested that a common attentional limitation may be responsible for both. To date, however, evidence supporting the existence of such a “unified” bottleneck has been mixed. Here, we tested the unified bottleneck hypothesis using time-resolved fMRI. Experiment 1 isolated brain regions involved in the response selection bottleneck that limits speeded dual-task performance. These same brain regions were not only engaged by a perceptual encoding task in Experiment 2, their activity also tracked delays to a speeded decision-making task caused by concurrent perceptual encoding (Experiment 3). We conclude that a unified attentional bottleneck, including the inferior frontal junction, superior medial frontal cortex, and bilateral insula, temporally limits operations as diverse as perceptual encoding and decision-making.
Cognition | 2008
Michael Tombu; Adriane E. Seiffert
Attentional demands of multiple-object tracking were demonstrated using a dual-task paradigm. Participants were asked to make speeded responses based on the pitch of a tone, while at the same time tracking four of eight identical dots. Tracking difficulty was manipulated either concurrent with or after the tone task. If increasing tracking difficulty increases attentional demands, its effect should be larger when it occurs concurrent with the tone. In Experiment 1, tracking difficulty was manipulated by having all dots briefly attract one another on some trials, causing a transient increase in dot proximity and speed. Results showed that increasing proximity and speed had a significantly larger effect when it occurred at the same time as the tone task. Experiments 2 and 3 showed that manipulating either proximity or speed independently was sufficient to produce this pattern of results. Experiment 4 manipulated object contrast, which affected tracking performance equally whether it occurred concurrent with or after the tone task. Overall, results support the view that the moment-to-moment tracking of multiple objects demands attention. Understanding what factors increase the attentional demands of tracking may help to explain why tracking is sometimes successful and at other times fails.
The Journal of Neuroscience | 2013
Benjamin J. Tamber-Rosenau; Paul E. Dux; Michael Tombu; Christopher L. Asplund; René Marois
Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., “central executive,” Baddeley and Hitch, 1974; “supervisory attentional system,” Norman and Shallice, 1986; “response selection bottleneck,” Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.
Attention Perception & Psychophysics | 2011
Michael Tombu; Adriane E. Seiffert
People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target–distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking—one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.
Attention Perception & Psychophysics | 2014
Kelly Garner; Michael Tombu; Paul E. Dux
A growing body of research suggests that dual-task interference in sensory consolidation (e.g., the attentional blink, AB) and response selection (e.g., the psychological refractory period, PRP) stems from a common central bottleneck of information processing. With regard to response selection, it is well known that training reduces dual-task interference. We tested whether training that is known to be effective for response selection can also reduce dual-task interference in sensory consolidation. Over two experiments, performance on a PRP paradigm (Exp. 1) and on AB paradigms (differing in their stimuli and task demands, Exps. 1 and 2) was examined after participants had completed a relevant training regimen (T1 practice for both paradigms), an irrelevant training regimen (comparable sensorimotor training, not related to T1 for both tasks), a visual-search training regimen (Exp. 2 only), or after participants had been allocated to a no-training control group. Training that had shown to be effective for reducing dual-task interference in response selection was also found to be effective for reducing interference in sensory consolidation. In addition, we found some evidence that training benefits transferred to the sensory consolidation of untrained stimuli. Collectively, these findings show that training benefits can transfer across cognitive operations that draw on the central bottleneck in information processing. These findings have implications for theories of the AB and for the design of cognitive-training regimens that aim to produce transferable training benefits.
Attention Perception & Psychophysics | 2008
Michael Tombu; John K. Tsotsos
Subjects were required to attend to an orientation and make judgments about the stripes on briefly presented disks. Stripe orientation was varied so that they could be at, near, or far from the attended orientation. According to the selective-tuning model (Tsotsos, 1990; Tsotsos et al., 1995), attending to an orientation results in an inhibitory surround for nearby orientations, but not for orientations farther away. In line with this prediction, the results revealed an inhibitory surround. As in the spatial domain, attending to a point in orientation space results in an inhibitory surround for nearby orientations.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting | 2013
Geoffrey Ho; Justin G. Hollands; Michael Tombu; Ken Ueno; Matt Lamb
Blue force tracking (BFT) is a military technology that provides positional awareness of friendly forces on a digital map through global positioning system (GPS) technology. For dismounted soldiers, having readily available information on the location of friendly forces can be critical for mission success. However, GPS can report positions that are spatially inaccurate. The present study required 36 military participants to lead a team through a simulated mission in a virtual environment. The mission required the participant to find and support friendly forces engaged in a firefight with enemy forces. Participants had a digital map, an unreliable BFT device, or a perfectly reliable BFT device. The results indicated that participants using BFT engaged enemy forces more quickly, used their BFT to gain a wider scope of their environment, and had lower workload. For most measures, there were no significant differences between reliable and unreliable BFT, suggesting that even an unreliable BFT can provide benefits to soldier performance.
Journal of Behavioral Decision Making | 2015
Michael Tombu; David R. Mandel
Journal of Vision | 2010
Michael Tombu; Adriane E. Seiffert