Michael Traurig
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Traurig.
Diabetes | 2007
Tingwei Guo; Robert L. Hanson; Michael Traurig; Yunhua L. Muller; Lijun Ma; Janel Mack; Sayuko Kobes; William C. Knowler; Clifton Bogardus; Leslie J. Baier
OBJECTIVE— The transcription factor 7-like 2 (TCF7L2) gene was initially reported to be associated with type 2 diabetes in Icelandic, Danish, and U.S. populations. We investigated whether TCF7L2 also has a role in type 2 diabetes susceptibility in Pima Indians. RESEARCH DESIGN AND METHODS— The six variants reported to be associated with type 2 diabetes in the Icelandic study were genotyped in a population-based sample of 3,501 Pima Indians (1,561 subjects had type 2 diabetes, and 1,940 did not have diabetes). In addition, the coding and promoter regions of TCF7L2 were sequenced in 24 Pima subjects. The one variant identified by sequencing, 35 additional database variants positioned in introns, and the six variants reported in the Icelandic study were genotyped in Pima families to determine the haplotype structure of TCF7L2 among Pima Indians. Fourteen representative variants were selected and genotyped in 3,501 Pima Indians. RESULTS— The six variants initially reported to be associated with type 2 diabetes were less common in Pima Indians compared with samples of European origin, and none were associated with type 2 diabetes. One representative variant, rs1225404, was nominally associated with type 2 diabetes in a general model (additive P = 0.03, dominant P = 0.005) but not in a within-family analysis (additive P = 0.2, dominant P = 0.07). However, several variants were associated with BMI; in particular, rs12255372 was associated in both general and within-family analyses (both P = 0.0007). Modest associations were also found with traits predictive for type 2 diabetes. CONCLUSIONS— Variation within TCF7L2 does not confer major risk for type 2 diabetes among the Pima Indian population.
Diabetes | 2014
Robert L. Hanson; Yunhua L. Muller; Sayuko Kobes; Tingwei Guo; Li Bian; Victoria Ossowski; Kim Wiedrich; Jeffrey Sutherland; Christopher Wiedrich; Darin Mahkee; Ke Huang; Maryam Abdussamad; Michael Traurig; E. Jennifer Weil; Robert G. Nelson; Peter H. Bennett; William C. Knowler; Clifton Bogardus; Leslie J. Baier
Most genetic variants associated with type 2 diabetes mellitus (T2DM) have been identified through genome-wide association studies (GWASs) in Europeans. The current study reports a GWAS for young-onset T2DM in American Indians. Participants were selected from a longitudinal study conducted in Pima Indians and included 278 cases with diabetes with onset before 25 years of age, 295 nondiabetic controls ≥45 years of age, and 267 siblings of cases or controls. Individuals were genotyped on a ∼1M single nucleotide polymorphism (SNP) array, resulting in 453,654 SNPs with minor allele frequency >0.05. SNPs were analyzed for association in cases and controls, and a family-based association test was conducted. Tag SNPs (n = 311) were selected for 499 SNPs associated with diabetes (P < 0.0005 in case-control analyses or P < 0.0003 in family-based analyses), and these SNPs were genotyped in up to 6,834 additional Pima Indians to assess replication. Rs1861612 in DNER was associated with T2DM (odds ratio = 1.29 per copy of the T allele; P = 6.6 × 10−8, which represents genome-wide significance accounting for the number of effectively independent SNPs analyzed). Transfection studies in murine pancreatic β-cells suggested that DNER regulates expression of notch signaling pathway genes. These studies implicate DNER as a susceptibility gene for T2DM in American Indians.
Diabetes | 2009
Michael Traurig; Janel Mack; Robert L. Hanson; Maya Ghoussaini; David Meyre; William C. Knowler; Sayuko Kobes; Philippe Froguel; Clifton Bogardus; Leslie J. Baier
OBJECTIVE Haploinsufficiency of SIM1 is a cause of rare monogenic obesity. To assess the role of SIM1 in polygenic obesity, this gene was analyzed in the Pima Indian population, which has a high prevalence of obesity. RESEARCH DESIGN AND METHODS SIM1 was sequenced in 96 individuals. Variants (n = 46) were genotyped in a population-based sample of 3,250 full-heritage Pima Indians and in a separate replication sample of 2,944 predominately non–full-heritage subjects from the same community. RESULTS Variants spanning the upstream region of SIM1 through intron 8 were associated with BMI in the full-heritage Pima Indians, where the strongest associations (P ∼ 10−4 to 10−6) were with common variants (risk allele frequency 0.61–0.67). The difference in mean BMI between individuals homozygous for the major allele compared with homozygotes for the minor allele was ∼2.2 kg/m2 (P = 2 × 10−5 for rs3213541). These associations replicated in the separate sample of subjects from the same community (P = 5 × 10−3 for rs3213541). The strongest associations (P = 4 × 10−7, controlled for age, sex, birth year, and heritage) were seen in the combined sample (n = 6,194). The risk allele for obesity was more common in full-heritage Pimas than in the mixed-heritage subjects. Two variants (rs3734353 and rs3213541) were also genotyped in 1,275 severely obese and 1,395 lean control subjects of French European ancestry. The Pima risk alleles were the minor alleles in the European samples, and these variants did not display any significant association (P > 0.05). CONCLUSIONS Common variation in SIM1 is associated with BMI on a population level in Pima Indians where the risk allele is the major allele.
Diabetes | 2010
Lijun Ma; Robert L. Hanson; Michael Traurig; Yunhua L. Muller; Bakhshish P. Kaur; Jessica Perez; David Meyre; Mao Fu; Antje Körner; Paul W. Franks; Wieland Kiess; Sayuko Kobes; William C. Knowler; Peter Kovacs; Philippe Froguel; Alan R. Shuldiner; Clifton Bogardus; Leslie J. Baier
OBJECTIVE A genome-wide association study (GWAS) in Pima Indians (n = 413) identified variation in the ataxin-2 binding protein 1 gene (A2BP1) that was associated with percent body fat. On the basis of this association and the obese phenotype of ataxin-2 knockout mice, A2BP1 was genetically and functionally analyzed to assess its potential role in human obesity. RESEARCH DESIGN AND METHODS Variants spanning A2BP1 were genotyped in a population-based sample of 3,234 full-heritage Pima Indians, 2,843 of whom were not part of the initial GWAS study and therefore could serve as a sample to assess replication. Published GWAS data across A2BP1 were additionally analyzed in French adult (n = 1,426) and children case/control subjects (n = 1,392) (Meyre et al. Nat Genet 2009;41:157–159). Selected variants were genotyped in two additional samples of Caucasians (Amish, n = 1,149, and German children case/control subjects, n = 998) and one additional Native American (n = 2,531) sample. Small interfering RNA was used to knockdown A2bp1 message levels in mouse embryonic hypothalamus cells. RESULTS No single variant in A2BP1 was reproducibly associated with obesity across the different populations. However, different variants within intron 1 of A2BP1 were associated with BMI in full-heritage Pima Indians (rs10500331, P = 1.9 × 10−7) and obesity in French Caucasian adult (rs4786847, P = 1.9 × 10−10) and children (rs8054147, P = 9.2 × 10−6) case/control subjects. Reduction of A2bp1 in mouse embryonic hypothalamus cells decreased expression of Atxn2, Insr, and Mc4r. CONCLUSIONS Association analysis suggests that variation in A2BP1 influences obesity, and functional studies suggest that A2BP1 could potentially affect adiposity via the hypothalamic MC4R pathway.
Diabetes | 2006
Michael Traurig; Paska A. Permana; Saraswathy Nair; Sayuko Kobes; Clifton Bogardus; Leslie J. Baier
Prior microarray studies comparing global gene expression patterns in preadipocytes/stromal vascular cells isolated from nonobese nondiabetic versus obese nondiabetic Pima Indians showed that matrix metalloproteinase 9 (MMP9) is upregulated in obese subjects. The current study targeted analysis of nine additional MMP genes that cluster to a region on chromosome 11q22 that is linked to BMI and percent body fat. Differential-display PCR showed that MMP3 is downregulated in preadipocytes/stromal vascular cells from obese subjects, and real-time PCR showed that MMP3 expression levels are negatively correlated with percent body fat. To determine whether variants within MMP3 are responsible for its altered expression, MMP3 was sequenced, and seven representative variants were genotyped in 1,037 Pima subjects for association analyses. Two variants were associated with both BMI and type 2 diabetes, and two additional variants were associated with type 2 diabetes alone; however, none of these variants were associated with MMP3 expression levels. We propose that the MMP3 pathway is altered in human obesity, but this alteration may be the result of a combination of genetic variation within the MMP3 locus itself, as well as variation in additional factors, either primary or secondary to obesity, that regulate expression of the MMP3 gene.
Diabetes | 2006
Yan Guo; Michael Traurig; Lijun Ma; Sayuko Kobes; Inge Harper; Aniello M. Infante; Clifton Bogardus; Leslie J. Baier; Michal Prochazka
The muscarinic acetylcholine receptor subtype M3 (CHRM3) gene is expressed in islet β-cells and has a role in stimulating insulin secretion; therefore, CHRM3 was analyzed as a candidate gene for type 2 diabetes in Pima Indians. Ten variants were genotyped in a family-based sample (n = 1,037), and 1 variant (rs3738435) located in the 5′ untranslated region of an alternative transcript was found to be modestly associated with both early-onset type 2 diabetes and the acute insulin response in a small subset of these subjects. To better assess whether this variant has a role in acute insulin secretion, which could affect risk for early-onset type 2 diabetes, rs3738435 was genotyped in a larger group of normal glucose-tolerant Pima Indians who had measures of acute insulin secretion (n = 282) and a larger case-control group of Pima Indians selected for early-onset type 2 diabetes (n = 348 case subjects with age of onset <25 years; n = 392 nondiabetic control subjects aged >45 years). Genotyping in these larger sets of subjects confirmed that the C allele of rs3738435 was associated with a reduced acute insulin response (adjusted P = 0.00006) and was also modestly associated with increased risk of early-onset type 2 diabetes (adjusted P = 0.02).
Human Molecular Genetics | 2013
Li Bian; Michael Traurig; Robert L. Hanson; Alejandra Marinelarena; Sayuko Kobes; Yunhua L. Muller; Alka Malhotra; Ke Huang; Jessica Perez; Alex Gale; William C. Knowler; Clifton Bogardus; Leslie J. Baier
To identify genes that affect body mass index (BMI) in American Indians who are predominately of Pima Indian heritage, we previously completed a genome-wide association study in 1120 American Indians. That study also included follow-up genotyping for 9 SNPs in 2133 additional subjects. A comprehensive follow-up study has subsequently been completed where 292 SNPs were genotyped in 3562 subjects, of which 128 SNPs were assessed for replication in 3238 additional subjects. In the combined subjects (n = 6800), BMI associations for two SNPs, rs12882548 and rs11652094, approached genome-wide significance (P = 6.7 × 10−7 and 8.1 × 10−7, respectively). Rs12882548 is located in a gene desert on chromosome 14 and rs11652094 maps near MAP2K3. Several SNPs in the MAP2K3 region including rs11652094 were also associated with BMI in Caucasians from the GIANT consortium (P = 10−2–10−5), and the combined P-values across both American Indians and Caucasian were P = 10−4–10−9. Follow-up sequencing across MAP2K3 identified several paralogous sequence variants indicating that the region may have been duplicated. MAP2K3 expression levels in adipose tissue biopsies were positively correlated with BMI, although it is unclear if this correlation is a cause or effect. In vitro studies with cloned MAP2K3 promoters suggest that MAP2K3 expression may be up-regulated during adipogenesis. Microarray analyses of mouse hypothalamus cells expressing constitutively active MAP2K3 identified several up-regulated genes involved in immune/inflammatory pathways and a gene, Hap1, thought to play a role in appetite regulation. We conclude that MAP2K3 is a reproducible obesity locus that may affect body weight via complex mechanisms involving appetite regulation and hypothalamic inflammation.
Obesity | 2012
Michael Traurig; Jessica Perez; Lijun Ma; Li Bian; Sayuko Kobes; Robert L. Hanson; William C. Knowler; Jonathan Krakoff; Clifton Bogardus; Leslie J. Baier
Genome‐wide association studies (GWASs) have been used to search for susceptibility genes for type 2 diabetes and obesity in the Pima Indians, a population with a high prevalence of both diseases. In these studies, a variant (rs2025804) in the LEPR gene was nominally associated with BMI in 1,082 subjects (P = 0.03 adjusted for age, sex, birth year, and family membership). Therefore the LEPR and leptin overlapping transcript (LEPROT) genes were selected for further sequencing and genotyping in larger population‐based samples for association analyses with obesity‐related phenotypes. Selected variants (n = 80) spanning these genes were genotyped in a sample of full‐heritage Pima Indians (n = 2,842) and several common variants including rs2025804 were nominally associated with BMI (P = 0.05–0.003 adjusted for age, sex, birth year, and family membership). Four common tag variants associated with BMI in the full‐heritage Pima Indian sample were genotyped in a second sample of mixed‐heritage Native Americans (n = 2,969) and three of the variants showed nominal replication (P = 0.03–0.006 adjusted as above and additionally for Indian heritage). Combining both samples provided the strongest evidence for association (adjusted P = 0.0003–0.0001). A subset of these individuals (n = 403) had been metabolically characterized for predictors of obesity and the BMI risk alleles for the variants tagged by rs2025804 were also associated with lower 24‐h energy expenditure (24hEE) as assessed in a human respiratory chamber (P = 0.0007 adjusted for age, sex, fat mass, fat‐free mass, activity, and family membership). We conclude that common noncoding variation in the LEPR gene is associated with higher BMI and lower energy expenditure in Native Americans.
Diabetes | 2010
Li Bian; Robert L. Hanson; Victoria Ossowski; Kim Wiedrich; Clinton C. Mason; Michael Traurig; Yunhua L. Muller; Sayuko Kobes; William C. Knowler; Leslie J. Baier; Clifton Bogardus
OBJECTIVE Prior genome-wide association and exon array expression studies both provided suggestive evidence that apoptosis signal regulating kinase 1 (ASK1) may influence in vivo insulin action in Pima Indians. Genetic variants in or near ASK1 were analyzed to assess the role of this gene in insulin action and type 2 diabetes. RESEARCH DESIGN AND METHODS Genotypic data from 31 variants were used to determine the linkage disequilibrium pattern across ASK1 in Pima Indians. Eight tag SNPs were initially genotyped in 3,501 full-heritage Pima Indians. Replication for association with diabetes was assessed in a second population-based sample of 3,723 Native Americans and the published DIAGRAM study. Quantitative traits were analyzed in 536 nondiabetic Native Americans, and ASK1 expression was examined in skeletal muscle of 153 nondiabetic Native Americans. RESULTS Three tag SNPs were associated with type 2 diabetes (rs35898099, P = 0.003, odds ratio [95% CI] 1.27 [1.08–1.47]; rs1570056, P = 0.007, 1.19 [1.05–1.36]; rs7775356, P = 0.04, 1.14 [1.01–1.28]) in the full-heritage Pima Indians. The association with rs35898099 was replicated in a second sample of Native Americans (P = 0.04, 1.22 [1.01–1.47]), while that for rs1570056 was replicated in the DIAGRAM study of Caucasians (Z statistic based P = 0.026; fixed-effect model, 1.06 [1.00–1.12]). The diabetes risk allele for rs1570056 was associated with reduced insulin action as assessed by either HOMA-IR in 2,549 nondiabetic full-heritage Pima Indians (P = 0.027) or a hyperinsulinemic-euglycemic clamp among 536 nondiabetic Native Americans (P = 0.02). Real-time PCR identified a positive correlation between ASK1 expression in skeletal muscle biopsies and in vivo insulin action (P = 0.02, r = 0.23), and the risk allele for rs1570056 was associated with lower ASK1 expression (P = 0.003, r = −0.22). CONCLUSIONS ASK1 variants may increase susceptibility to type 2 diabetes by decreasing insulin sensitivity via reduced ASK1 expression.
Diabetologia | 2007
Michael Traurig; Robert L. Hanson; Sayuko Kobes; C. Bogardus; Leslie J. Baier
Aim/hypothesisSingle-nucleotide polymorphisms (SNPs) in the protein tyrosine phosphatase 1B gene (PTPN1) have been reported to be associated with type 2 diabetes in white subjects, and insulin sensitivity and fasting glucose levels in Hispanic Americans. In this study, we determined whether SNPs in PTPN1 also have a role in type 2 diabetes susceptibility in Pima Indians, a population with the world’s highest reported prevalence and incidence rates of this disease.Materials and methodsThirty-one SNPs across a 161-kb region encompassing PTPN1 were genotyped in 1,037 Pima Indians for association studies with type 2 diabetes and obesity.ResultsTwenty-five of the SNPs had allele frequencies >0.05, and these SNPs fell into two linkage disequilibrium blocks (D′ > 0.9). Block 1 contains six SNPs that span a 61-kb region upstream of PTPN1, while block 2 contains 19 SNPs that cover the entire PTPN1 gene. None of the SNPs, analysed individually or as haplotypes, was associated with either type 2 diabetes or obesity. However, three SNPs located in block 1 were nominally associated (p values ranging from 0.01 to 0.05) with insulin sensitivity as measured by the hyperinsulinaemic–euglycaemic clamp technique.Conclusions/interpretationBased on our association results, we conclude that SNPs within PTPN1 are unlikely to have a major role in the aetiology of type 2 diabetes or obesity in Pima Indians.