Michael Tsesarsky
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Tsesarsky.
International Journal of Rock Mechanics and Mining Sciences | 2001
Mark Talesnick; Yossef H. Hatzor; Michael Tsesarsky
The submission explores the mechanical behavior of a very porous chalk formation, in which a system of ancient caverns was excavated. Incidents of general and localized failure of these ancient caverns initiated a comprehensive laboratory testing program aimed at investigating the anisotropic nature of the stress–strain response and strength of the material. It was felt that these aspects could be of profound importance in the stability of the cavern systems. The effect of water content over a broad range from 1.5% to saturation, on the compressive and tensile strength was also studied. Testing was based on the hollow cylinder methodology and was supplemented with uniaxial compression of solid cylinders and diametric compression of Brazilian disks. Use of the hollow cylinder methodology was extended to failure conditions. Test results illustrate the anisotropic nature of the stress–strain response of the chalk. The material clearly displays transverse isotropy, with horizontal bedding planes corresponding to the plane of material symmetry. The modulus of deformation within the plane of material symmetry is significantly higher than that perpendicular to bedding planes. Torsional shear of hollow cylinder specimens was employed to measure the shear modulus of the chalk. The testing carried out up to failure illustrated the anisotropy of the chalk strength. The compressive strength was found to be 50% higher in compression parallel to bedding than perpendicular to bedding. Increasing water content was found to have a consistent detrimental effect on compressive strength, tensile strength and material stiffness. The most drastic effect was found due to relatively small increases in water content, at initial water contents of less than 5%. Anisotropy of the chalk strength was found to persist over the entire range of water contents considered.
International Journal of Rock Mechanics and Mining Sciences | 2002
Yossef H. Hatzor; Mark Talesnick; Michael Tsesarsky
Abstract The stability of two systems of bell-shaped caverns excavated some 1000 years ago at Bet Guvrin National Park is investigated. The caverns were excavated in a weak, anisotropic, and moderately discontinuous chalk. The cavern stability is considered based on two separate and independent methods: a continuum model framework—FLAC, used for stress analysis, and a discontinuous approach—block theory, used for critical key block analysis. The numerical stress analysis reveals that in the case of very large span openings, tensile fracture of intact rock may be responsible for instabilities, which may lead to global failure. Evidence of tensile rupture at margins of failed caverns is abundant at the Park. The discontinuous block theory analysis reveals that the moderate joint set spacing at Bet Guvrin, up to 45% of the roof area may be comprised of removable blocks. The removable keyblocks in the roof remain in place due to arching stresses, which develop through the roof material. The chalk at the roof can sustain the maximum loads in existing caverns, as predicted by the numerical stress analysis. However, local failures due to exceedingly high compressive stresses at the abutments or by tensile fracture at the roof, may lead to relaxation of arching stresses followed by keyblock displacement. Such a “mixed failure mode” process could eventually lead, over time, to global collapse. Indications that “mixed failure mode” processes are presently active in the studied caverns are substantiated by in-situ measurement of keyblock displacements. It is suggested that in weak and discontinuous rock environments where “mixed failure mode” processes may be active, long term stability evaluation should be based on both continuous and discontinuous stability analyses.
Environmental Science & Technology | 2016
Daniella Gat; Zeev Ronen; Michael Tsesarsky
Microbial-induced CaCO3 precipitation (MICP) via urea-hydrolysis (ureolysis) is an emerging soil improvement technique for various civil engineering and environmental applications. In-situ application of MICP in soils is performed either by augmenting the site with ureolytic bacteria or by stimulating indigenous ureolytic bacteria. Both of these approaches may lead to changes in the indigenous bacterial population composition and to the accumulation of large quantities of ammonium. In this batch study, effective ureolysis was stimulated in coastal sand from a semiarid environment, with low initial ureolytic bacteria abundance. Two different carbon sources were used: yeast-extract and molasses. No ureolysis was observed in their absence. Ureolysis was achieved using both carbon sources, with a higher rate in the yeast-extract enrichment resulting from increased bacterial growth. The changes to the indigenous bacterial population following biostimulation of ureolysis were significant: Bacilli class abundancy increased from 5% in the native sand up to 99% in the yeast-extract treatment. The sand was also enriched with ammonium-chloride, where ammonia-oxidation was observed after 27 days, but was not reflected in the bacterial population composition. These results suggest that biostimulation of ureolytic bacteria can be applied even in a semiarid and nutrient-poor environment using a simple carbon source, that is, molasses. The significant changes to bacterial population composition following ureolysis stimulation could result in a decrease in trophic activity and diversity in the treated site, thus they require further attention.
Journal of Geotechnical and Geoenvironmental Engineering | 2009
Michael Tsesarsky; Yossef H. Hatzor
The kinematics of overhanging rock slopes and the mechanical constraints associated with this specific slope geometry were studied. Investigation of the problem began with a generalized rigid body analysis and was followed by a numerical discontinuous deformation analysis, both of which were performed in two dimensions. It was found that eccentric loading and hence the development of tensile stresses at the base of overhanging rock slopes control their stability. Global slope instability, which is typically manifested in a forward rotation failure mode, may ensue if a through-going vertical discontinuity, typically referred to as “tension crack,” transects the slope at the back. The transition from stable to unstable configurations depends on the distance between the tension crack and the toe of the slope. On the basis of the analysis, a simple threefold stability classification—stable, conditionally stable, and unstable—is proposed. In addition, geometrical guidelines, based on standard field mapping dat...
Journal of Geotechnical and Geoenvironmental Engineering | 2018
Michael G. Gomez; Charles M. R. Graddy; Jason T. DeJong; Douglas C. Nelson; Michael Tsesarsky
AbstractMicrobially induced calcite precipitation (MICP) is a biomediated cementation process that uses natural microbial enzymatic activity to improve the geotechnical properties of granular soils...
Bulletin of the Seismological Society of America | 2017
Omri Volk; Shahar Shani‐Kadmiel; Zohar Gvirtzman; Michael Tsesarsky
Abstract We study the propagation of seismic waves, the resulting ground motions, and their amplification atop sedimentary structures underlying continental passive margins. We employ a set of generic models with increasing complexity within a framework of a 3D numerical scheme. The basic geological structure and velocity model were derived from the subsurface of the Israeli coastal plain where soft sediments form a wedge over the stiffer bedrock and fill subsurface canyons that incise deep into the bedrock. Ground motions were modeled for both seaside and landside seismic sources. We show that for a landside source, peak ground velocities (PGVs) atop a sedimentary wedge are amplified by a maximum factor of 2.6 and on average by a factor of 1.6, relative to a reference model. This amplification is mainly due to the ellipticity of Rayleigh waves in the soft sediment layer. Spatial distribution of amplification factors shows that sedimentary wedges do not exhibit a prominent edge effect. Atop sediment‐filled canyons and landside source, PGV are amplified by a maximum factor of 3.3, relative to a reference model, along the exposed part of the canyon. The PGV amplification factor in the canyon relative to adjacent hard‐rock site is up to 2.4. PGV amplification atop the sediment‐filled canyons is mainly due to the geometrical focusing of SH waves. Based on our findings, we present a simplified ground‐motion amplification map for the Israeli coastal plain. Electronic Supplement: Animations of the three components of the ground‐motion models.
Chemosphere | 2017
Daniella Gat; Zeev Ronen; Michael Tsesarsky
Microbially induced CaCO3 precipitation (MICP) via urea hydrolysis is an emerging technique for soil amelioration, building materials rehabilitation and pollutants sequestration amongst other various environmental applications. The successful application of MICP requires the sustainability of the precipitated CaCO3; to which the fate of ammonia, the main by-product of ureolysis, is potentially significante. Ammonia volatilization and biological ammonia oxidation both induce a pH decrease, which, in turn, might cause CaCO3 dissolution. To examine the potential effect of accumulated ammonia on precipitated CaCO3, we conducted a long-term MICP batch experiment, using environmental enrichment cultures of ureolytic bacteria. Here we show that CaCO3 precipitation was completed within 15-27 days, along with a rise in ammonium concentration. Following completion of ureolysis and precipitation, ammonium concentrations decreased, leading to a pH decrease. About 30 days after precipitation was completed, as much as 30% CaCO3 dissolution, was observed. A two-step model, describing urea hydrolysis followed by the removal of ammonia from the precipitation solution, predicted CaCO3 dissolution due to ammonia volatilization. We suggest that ureolytic MICP might result in ammonia volatilization, leading to significant CaCO3 dissolution. These results provide basic insights into the sustainability of ureolytic MICP and should further encourage removal of the accumulated ammonia from the treated site.
Archive | 2012
Amnon Katz; Michael Tsesarsky; Alva Peled; I. Anteby
Textile Reinforced Concrete (TRC) became a common method lately for the production of thin elements having excellent properties. These elements can be used for strengthening concrete elements by applying them on the surface of these elements. This study examined concrete beams strengthened by carbon, glass or polyethylene TRC for their behavior under static and dynamic loads. Different static and dynamic behavior was identified for the different TRC materials. Significant differences between the carbon, glass and PE were observed in the static tests but not at the dynamic ones.
Rock Mechanics and Rock Engineering | 2005
Michael Tsesarsky; Yossef H. Hatzor; Nicholas Sitar
Tunnelling and Underground Space Technology | 2006
Michael Tsesarsky; Yossef H. Hatzor