Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Udelhoven is active.

Publication


Featured researches published by Michael Udelhoven.


The FASEB Journal | 2009

Neuronal IGF-1 resistance reduces Aβ accumulation and protects against premature death in a model of Alzheimer’s disease

Susanna Freude; Moritz M. Hettich; Christina Schumann; Oliver Stöhr; Linda Koch; Christoph Köhler; Michael Udelhoven; Uschi Leeser; Marita Müller; Naoto Kubota; Takashi Kadowaki; Wilhelm Krone; Hannsjörg Schröder; Jens C. Brüning; Markus Schubert

Alzheimers disease (AD) is characterized by progressive neurodegeneration leading to loss of cognitive abilities and ultimately to death. Postmortem investigations revealed decreased expression of cerebral insulin‐like growth factor (IGF)‐1 receptor (IGF‐1R) and insulin receptor substrate (IRS) proteins in patients with AD. To elucidate the role of insulin/IGF‐1 signaling in AD, we crossed mice expressing the Swedish mutation of amyloid precursor protein (APPSW, Tg2576 mice) as a model for AD with mice deficient for either IRS‐2, neuronal IGF‐1R (nIGF‐1R−/−), or neuronal insulin receptor (nIR−/−), and analyzed survival, glucose, and APP metabolism. In the present study, we show that IRS‐2 deficiency in Tg2576 mice completely reverses premature mortality in Tg2576 females and delays β‐amyloid (Aβ) accumulation. Analysis of APP metabolism suggested that delayed Aβ accumulation resulted from decreased APP processing. To delineate the upstream signal responsible for IRS‐2‐mediated disease protection, we analyzed mice with nIGF‐1R or nIR deficiency predominantly in the hippocampus. Interestingly, both male and female nIGF‐1R−/−Tg2576 mice were protected from premature death in the presence of decreased Aβ accumulation specifically in the hippocampus formation. However, neuronal IR deletion had no influence on lethality of Tg2576 mice. Thus, impaired IGF‐1/IRS‐2 signaling prevents premature death and delays amyloid accumulation in a model of AD.—Freude, S., Hettich, M. M., Schumann, C., Stohr, O., Koch, L., Kohler, C., Udelhoven, M., Leeser, U., Müller, M., Kubota, N., Kadowaki, T., Krone, W., Schroder, H., Bruning, J. C., Schubert, M. Neuronal IGF‐1 resistance reduces Aβ accumulation and protects against premature death in a model of Alzheimers disease. FASEB J. 23, 3315–3324 (2009). www.fasebj.org


Journal of Biological Chemistry | 2010

Role of Wnt-5a in the Determination of Human Mesenchymal Stem Cells into Preadipocytes

Roman Bilkovski; Dominik M. Schulte; Frank Oberhauser; Matthias Gomolka; Michael Udelhoven; Moritz M. Hettich; Bernhard Roth; Axel Heidenreich; Christian Gutschow; Wilhelm Krone; Matthias Laudes

Increasing adipocyte size as well as numbers is important in the development of obesity and type 2 diabetes, with adipocytes being generated from mesenchymal precursor cells. This process includes the determination of mesenchymal stem cells (MSC) into preadipocytes (PA) and the differentiation of PA into mature fat cells. Although the process of differentiation has been highly investigated, the determination in humans is poorly understood. In this study, we compared human MSC and human committed PA on a cellular and molecular level to gain further insights into the regulatory mechanisms in the determination process. Both cell types showed similar morphology and expression patterns of common mesenchymal and hematopoietic surface markers. However, although MSC were able to differentiate into adipocytes and osteocytes, PA were only able to undergo adipogenesis, indicating that PA lost their multipotency during determination. WNT-5a expression showed significantly higher levels in MSC compared with PA suggesting that WNT-5a down-regulation might be important in the determination process. Indeed, incubation of human MSC in medium containing neutralizing WNT-5a antibodies abolished their ability to undergo osteogenesis, although adipogenesis was still possible. An opposite effect was achieved using recombinant WNT-5a protein. On a molecular level, WNT-5a was found to promote c-Jun N-terminal kinase-dependent intracellular signaling in MSC. Activation of this noncanonical pathway resulted in the induction of osteopontin expression further indicating pro-osteogenic effects of WNT-5a. Our data suggest that WNT-5a is necessary to maintain osteogenic potential of MSC and that inhibition of WNT-5a signaling therefore plays a role in their determination into PA in humans.


Journal of Neurochemistry | 2008

IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination

Susanna Freude; Uschi Leeser; Marita Müller; Moritz M. Hettich; Michael Udelhoven; Katharina Schilbach; Kazuyuki Tobe; Takashi Kadowaki; Christoph Köhler; Hannsjörg Schröder; Wilhelm Krone; Jens C. Brüning; Markus Schubert

Insulin‐like growth factor (IGF)‐1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF‐1 receptor (IGF‐1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS‐1 and ‐2 serve as intracellular IGF‐1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS‐2 in myelination, we analyzed myelination in IRS‐2 deficient (IRS‐2−/−) mice and age‐matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS‐2−/− brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10‐IRS‐2−/− mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up‐regulation of IRS‐1 expression and increased IGF‐1R signaling were observed in IRS‐2−/− mice at P10‐14, indicating a compensatory mechanism to overcome IRS‐2 deficiency. Adult IRS‐2−/− mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain‐specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF‐1R/IRS‐2 mediated signals are critical for appropriate timing of myelination in vivo.


Age | 2013

Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer’s disease

Oliver Stöhr; Katharina Schilbach; Lorna Moll; Moritz M. Hettich; Susanna Freude; F. Thomas Wunderlich; Marianne B. Ernst; Johanna Zemva; Jens C. Brüning; Wilhelm Krone; Michael Udelhoven; Markus Schubert

In brains from patients with Alzheimer’s disease (AD), expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), and insulin receptor substrate proteins is downregulated. A key step in the pathogenesis of AD is the accumulation of amyloid precursor protein (APP) cleavage products, β-amyloid (Aβ)1-42 and Aβ1–40. Recently, we and others have shown that central IGF-1 resistance reduces Aβ accumulation as well as Aβ toxicity and promotes survival. To define the role of IR in this context, we crossed neuron-specific IR knockout mice (nIR−/−) with Tg2576 mice, a well-established mouse model of an AD-like pathology. Here, we show that neuronal IR deficiency in Tg2576 (nIR−/−Tg2576) mice leads to markedly decreased Aβ burden but does not rescue premature mortality of Tg2576 mice. Analyzing APP C-terminal fragments (CTF) revealed decreased α-/β-CTFs in the brains of nIR−/−Tg2576 mice suggesting decreased APP processing. Cell based experiments showed that inhibition of the PI3-kinase pathway suppresses endosomal APP cleavage and decreases α- as well as β-secretase activity. Deletion of only one copy of the neuronal IGF-1R partially rescues the premature mortality of Tg2576 mice without altering total amyloid load. Analysis of Tg2576 mice expressing either a dominant negative or constitutively active form of forkhead box-O (FoxO)1 did not reveal any alteration of amyloid burden, APP processing and did not rescue premature mortality in these mice. Thus, our findings identified IR signaling as a potent regulator of Aβ accumulation in vivo. But exclusively decreased IGF-1R expression reduces AD-associated mortality independent of β-amyloid accumulation and FoxO1-mediated transcription.


Journal of Molecular Medicine | 2008

Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4

Matthias Laudes; Roman Bilkovski; Frank Oberhauser; Andrea Droste; Matthias Gomolka; Uschi Leeser; Michael Udelhoven; Wilhelm Krone

Generation of new adipocytes plays a major role in the development of obesity. We previously have shown that transcriptional repressor factor that binds to IST (FBI)-1 exerts a dual effect in the process of adipogenesis by inhibiting proliferation and promoting differentiation of preadipocytes. The aim of the present study was to identify FBI-1 regulated molecular effectors that could account for these effects. Overexpressing FBI-1 in preadipocytes resulted in reduced expression of the cell cycle regulator cyclin A, which may explain FBI-1 induced inhibition of proliferation. Interestingly, FBI-1 repressed cyclin A promoter activity through an indirect mechanisms that did not involve direct binding of FBI-1 to the promoter sequence, but rather FBI-1 inhibition of transcriptional activator Sp1 binding to a regulatory element at −452 to −443. We also show that FBI-1 promotes terminal preadipocyte differentiation through a mechanism involving decreased levels of expression of the PPARγ inhibitor E2F-4. FBI-1 significantly reduced E2F-4 promoter activity. Contrary to cyclin A, we found FBI-1-induced repression of E2F-4 is mediated by a direct mechanism via a FBI-1 regulatory element at −11 to −5. As function of transcriptional repressors normally depends on the presence of regulatory co-factors we also performed expression profiling of potential FBI-1 co-repressors throughout adipogenesis. In these experiments Sin3A and histon deacetylase (HDAC)-1 showed a similar expression pattern compared to FBI-1. Strikingly, co-immunoprecipitation studies revealed that FBI-1 binds Sin3A and HDAC-1 to form a repressor complex. Furthermore, by mutational analysis the amino terminal Poxvirus (POZ) domain of FBI-1 was found to be important for Sin3A and HDAC-1 binding. Taken together, FBI-1 is the first transcriptional repressor shown to act as a dual regulator in adipogenesis exerting repressor activities on target genes by both, direct and indirect mechanisms.


Journal of Molecular Endocrinology | 2010

Identification of a region in the human IRS2 promoter essential for stress induced transcription depending on SP1, NFI binding and ERK activation in HepG2 cells

Michael Udelhoven; Uschi Leeser; Susanna Freude; Moritz M. Hettich; Matthias Laudes; Jessika Schnitker; Wilhelm Krone; Markus Schubert

Recent studies have discovered changes in the insulin-/IGF1 signaling affecting glucose metabolism and the molecular pathogenesis of human hepatocellular cancer. Insulin/IGF1 receptor mediates its intracellular effects by recruitment of one out of the four different insulin receptor substrates (IRS). To investigate mechanisms of IRS2 expression, we analyzed transcriptional regulation of IRS2 in human HepG2 cells. We identified a region 688 bp upstream of the translation start codon responsible for approximately 90% of basal human IRS2 promoter activity in HepG2 cells, and confirmed binding of specificity protein 1 (also called Sp1 transcription factor, SP1) and nuclear factor 1 (NFI) in this region. Mutation of both SP1 and NFI binding sites or inhibition of extracellular signal regulated kinase (ERK) suppressed IRS2 promoter activity almost completely, revealing a major role of MAP kinases (MAPK) for IRS2 transcription. Activating this cascade with oxidative stress increased IRS2 promoter activity and endogenous IRS2 expression substantially. IRS2 promoter activity rose even more after additional inhibition of p38MAPK indicating an inhibitory effect of p38MAPK on ERK mediated IRS2 transcription. Activation of the MAPK pathway using interleukin 1, beta (IL1B) increased IRS2 promoter activity similar to oxidative stress. In contrast IL1B decreases and inhibition of the MAPK pathway increases IRS1 promoter activity revealing opposed effects of IL1B and ERK on the expression of different IRS proteins. In conclusion we discovered a specific region (-688 to -611 bp) in the IRS2 promoter essential for basal promoter activity and oxidative stress induced transcription depending on ERK activation and SP1 and NFI binding in human hepatocytes.


Biochimica et Biophysica Acta | 2011

Insulin receptor substrate-1 and -2 mediate resistance to glucose-induced caspase-3 activation in human neuroblastoma cells

Oliver Stöhr; Johann Hahn; Lorna Moll; Uschi Leeser; Susanna Freude; Corinna Bernard; Katharina Schilbach; Andreas Markl; Michael Udelhoven; Wilhelm Krone; Markus Schubert

Hyperglycemia in patients with type 2 diabetes causes multiple neuronal complications, e.g., diabetic polyneuropathy, cognitive decline, and embryonic neural crest defects due to increased apoptosis. Possible mechanisms of neuronal response to increased glucose burden are still a matter of debate. Insulin and insulin-like growth factor-1 (IGF-1) receptor signaling inhibits glucose-induced caspase-3 activation and apoptotic cell death. The insulin receptor substrates (IRS) are intracellular adapter proteins mediating insulins and IGF-1s intracellular effects. Even though all IRS proteins have similar function and structure, recent data suggest different actions of IRS-1 and IRS-2 in mediating their anti-apoptotic effects in glucose neurotoxicity. We therefore investigated the role of IRS-1/-2 in glucose-induced caspase-3 activation using human neuroblastoma cells. Overexpression of IRS-1 or IRS-2 caused complete resistance to glucose-induced caspase-3 cleavage. Inhibition of PI3-kinase reversed this protective effect of IRS-1 or IRS-2. However, MAP-kinases inhibition had only minor impact. IRS overexpression increased MnSOD abundance as well as BAD phosphorylation while Bim and BAX levels remained unchanged. Since Akt promotes cell survival at least partially via phosphorylation and inhibition of downstream forkhead box-O (FoxO) transcription factors, we generated neuroblastoma cells stably overexpressing a dominant negative mutant of FoxO1 mimicking activation of the insulin/IGF-1 pathway on FoxO-mediated transcription. Using these cells we showed that FoxO1 is not involved in neuronal protection mediated by increased IRS-1/-2 expression. Thus, overexpression of both IRS-1 and IRS-2 induces complete resistance to glucose-induced caspase-3 activation via PI3-kinase mediated BAD phosphorylation and MnSOD expression independent of FoxO1.


Journal of Endocrinology | 2010

Neuronal insulin receptor substrate 2 (IRS2) expression is regulated by ZBP89 and SP1 binding to the IRS2 promoter.

Michael Udelhoven; Mareike Pasieka; Uschi Leeser; Wilhelm Krone; Markus Schubert

Since neuronal insulin receptor substrate 2 (IRS2)-mediated signals coordinate key processes in rodent physiology such as food intake, fertility, longevity, and aging-related behavior, we analyzed the mechanisms of neuronal IRS2 expression in neuroblastoma (SHSY5Y) and hypothalamic (GT1-7) cell lines. Using dual luciferase reporter assays and IRS2 promoter deletion constructs, we identified a regulatory cassette within the IRS2 promoter between -779 and -679 bp from the translational start which is responsible for approximately 50% of neuronal IRS2 promoter activity. Chromatin immunoprecipitation assays and electromobility shift assay revealed four overlapping ZBP89/specificity protein 1 (SP1) binding sites which alternatively bind to ZBP89 (ZNF148 as listed in the HUGO Database) or SP1. Activation of this cassette is inhibited by phosphoinositide-3-kinase (PI3K) via increased ZBP89 binding to the promoter. Serum starvation caused increased SP1 binding at one specific SP1 site and decreased binding to another, proving a regulatory interaction between the different binding sites within this promoter cassette to tightly control IRS2 expression. Mutants containing all the possible combinations of one, two, three, or all the four SP1 binding sites of the IRS2 promoter revealed that SP1 binding to one particular site is most important for promoter activation. Stable downregulation of ZBP89 using siRNA substantially increased IRS2 mRNA and protein expression. Thus, alternative binding of ZBP89 or SP1 to the described region in the IRS2 promoter regulates neuronal IRS2 expression in a PI3K-dependent manner.


Age | 2013

Neuronal overexpression of insulin receptor substrate 2 leads to increased fat mass, insulin resistance, and glucose intolerance during aging

Johanna Zemva; Michael Udelhoven; L. Moll; Susanna Freude; Oliver Stöhr; H. S. Brönneke; R. B. Drake; Wilhelm Krone; Markus Schubert

The insulin receptor substrates (IRS) are adapter proteins mediating insulins and IGF1s intracellular effects. Recent data suggest that IRS2 in the central nervous system (CNS) is involved in regulating fuel metabolism as well as memory formation. The present study aims to specifically define the role of chronically increased IRS2-mediated signal transduction in the CNS. We generated transgenic mice overexpressing IRS2 specifically in neurons (nIRS2tg) and analyzed these in respect to energy metabolism, learning, and memory. Western blot (WB) analysis of nIRS2tg brain lysates revealed increased IRS2 downstream signaling. Histopathological investigation of nIRS2tg mice proved unaltered brain development and structure. Interestingly, nIRS2tg mice showed decreased voluntary locomotoric activity during dark phase accompanied with decreased energy expenditure (EE) leading to increased fat mass. Accordingly, nIRS2tg mice develop insulin resistance and glucose intolerance during aging. Exploratory behavior, motor function as well as food and water intake were unchanged in nIRS2tg mice. Surprisingly, increased IRS2-mediated signals did not change spatial working memory in the T-maze task. Since FoxO1 is a key mediator of IRS2-transmitted signals, we additionally generated mice expressing a dominant negative mutant of FoxO1 (FoxO1DN) specifically in neurons. This mutant mimics the effect of increased IRS2 signaling on FoxO-mediated transcription. Interestingly, the phenotype observed in nIRS2tg mice was not present in FoxO1DN mice. Therefore, increased neuronal IRS2 signaling causes decreased locomotoric activity in the presence of unaltered exploratory behavior and motor coordination that might lead to increased fat mass, insulin resistance, and glucose intolerance during aging independent of FoxO1-mediated transcription.


Diabetes | 2005

Peripheral Hyperinsulinemia Promotes Tau Phosphorylation In Vivo

Susanna Freude; Leona Plum; Jessika Schnitker; Uschi Leeser; Michael Udelhoven; Wilhelm Krone; Jens C. Brüning; Markus Schubert

Collaboration


Dive into the Michael Udelhoven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge