Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael V. Shunkov is active.

Publication


Featured researches published by Michael V. Shunkov.


Nature | 2010

Genetic history of an archaic hominin group from Denisova Cave in Siberia

David Reich; Richard E. Green; Martin Kircher; Johannes Krause; Nick Patterson; Eric Durand; Bence Viola; Adrian W. Briggs; Udo Stenzel; Philip L. F. Johnson; Tomislav Maricic; Jeffrey M. Good; Tomas Marques-Bonet; Can Alkan; Qiaomei Fu; Swapan Mallick; Heng Li; Matthias Meyer; Evan E. Eichler; Mark Stoneking; Michael P. Richards; Sahra Talamo; Michael V. Shunkov; Anatoli P. Derevianko; Jean-Jacques Hublin; Janet Kelso; Montgomery Slatkin; Svante Pääbo

Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.


Science | 2012

A High-Coverage Genome Sequence from an Archaic Denisovan Individual

Matthias Meyer; Martin Kircher; Marie Theres Gansauge; Heng Li; Fernando Racimo; Swapan Mallick; Joshua G. Schraiber; Flora Jay; Kay Prüfer; Cesare de Filippo; Peter H. Sudmant; Can Alkan; Qiaomei Fu; Ron Do; Nadin Rohland; Arti Tandon; Michael Siebauer; Richard E. Green; Katarzyna Bryc; Adrian W. Briggs; Udo Stenzel; Jesse Dabney; Jay Shendure; Jacob O. Kitzman; Michael F. Hammer; Michael V. Shunkov; Anatoli P. Derevianko; Nick Patterson; Aida M. Andrés; Evan E. Eichler

Ancient Genomics The Denisovans were archaic humans closely related to Neandertals, whose populations overlapped with the ancestors of modern-day humans. Using a single-stranded library preparation method, Meyer et al. (p. 222, published online 30 August) provide a detailed analysis of a high-quality Denisovan genome. The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size. The genome sequence also illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage. A close-up look provides clues to the relationships between modern humans, Denisovans, and Neandertals. We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.


Nature | 2014

The complete genome sequence of a Neanderthal from the Altai Mountains

Kay Prüfer; Fernando Racimo; Nick Patterson; Flora Jay; Sriram Sankararaman; Susanna Sawyer; Anja Heinze; Gabriel Renaud; Peter H. Sudmant; Cesare de Filippo; Heng Li; Swapan Mallick; Michael Dannemann; Qiaomei Fu; Martin Kircher; Martin Kuhlwilm; Michael Lachmann; Matthias Meyer; Matthias Ongyerth; Michael Siebauer; Christoph Theunert; Arti Tandon; Priya Moorjani; Joseph K. Pickrell; James C. Mullikin; Samuel H. Vohr; Richard E. Green; Ines Hellmann; Philip L. F. Johnson; Hélène Blanché

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Nature | 2010

The complete mitochondrial DNA genome of an unknown hominin from Southern Siberia

Johannes Krause; Qiaomei Fu; Jeffrey M. Good; Bence Viola; Michael V. Shunkov; Anatoli P. Derevianko; Svante Pääbo

With the exception of Neanderthals, from which DNA sequences of numerous individuals have now been determined, the number and genetic relationships of other hominin lineages are largely unknown. Here we report a complete mitochondrial (mt) DNA sequence retrieved from a bone excavated in 2008 in Denisova Cave in the Altai Mountains in southern Siberia. It represents a hitherto unknown type of hominin mtDNA that shares a common ancestor with anatomically modern human and Neanderthal mtDNAs about 1.0 million years ago. This indicates that it derives from a hominin migration out of Africa distinct from that of the ancestors of Neanderthals and of modern humans. The stratigraphy of the cave where the bone was found suggests that the Denisova hominin lived close in time and space with Neanderthals as well as with modern humans.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal

Pontus Skoglund; Bernd H. Northoff; Michael V. Shunkov; Anatoli P. Derevianko; Svante Pääbo; Johannes Krause; Mattias Jakobsson

Significance Strict laboratory precautions against present day human DNA contamination are standard in ancient DNA studies, but contamination is already present inside many ancient human fossils from previous handling without specific precautions. We designed a statistical framework to isolate endogenous ancient DNA sequences from contaminating sequences using postmortem degradation patterns and were able to reduce high-contamination fractions to negligible levels. We captured DNA sequences from a contaminated Neandertal bone from Okladnikov Cave in Siberia and used our method to assemble its mitochondrial genome sequence, which we find to be from a lineage basal to five of six previously published complete Neandertal mitochondrial genomes. Our method paves the way for the large-scale genetic analysis of contaminated human remains. One of the main impediments for obtaining DNA sequences from ancient human skeletons is the presence of contaminating modern human DNA molecules in many fossil samples and laboratory reagents. However, DNA fragments isolated from ancient specimens show a characteristic DNA damage pattern caused by miscoding lesions that differs from present day DNA sequences. Here, we develop a framework for evaluating the likelihood of a sequence originating from a model with postmortem degradation—summarized in a postmortem degradation score—which allows the identification of DNA fragments that are unlikely to originate from present day sources. We apply this approach to a contaminated Neandertal specimen from Okladnikov Cave in Siberia to isolate its endogenous DNA from modern human contaminants and show that the reconstructed mitochondrial genome sequence is more closely related to the variation of Western Neandertals than what was discernible from previous analyses. Our method opens up the potential for genomic analysis of contaminated fossil material.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Patterns of coding variation in the complete exomes of three Neandertals

Sergi Castellano; Genís Parra; Federico Sánchez-Quinto; Fernando Racimo; Martin Kuhlwilm; Martin Kircher; Susanna Sawyer; Qiaomei Fu; Anja Heinze; Birgit Nickel; Jesse Dabney; Michael Siebauer; Louise White; Hernán A. Burbano; Gabriel Renaud; Udo Stenzel; Carles Lalueza-Fox; Marco de la Rasilla; Antonio Rosas; Pavao Rudan; Dejana Brajković; Željko Kućan; Ivan Gušić; Michael V. Shunkov; Anatoli P. Derevianko; Bence Viola; Matthias Meyer; Janet Kelso; Aida M. Andrés; Svante Pääbo

Significance We use a hybridization approach to enrich the DNA from the protein-coding fraction of the genomes of two Neandertal individuals from Spain and Croatia. By analyzing these two exomes together with the genome sequence of a Neandertal from Siberia we show that the genetic diversity of Neandertals was lower than that of present-day humans and that the pattern of coding variation suggests that Neandertal populations were small and isolated from one another. We also show that genes involved in skeletal morphology have changed more than expected on the Neandertal evolutionary lineage whereas genes involved in pigmentation and behavior have changed more on the modern human lineage. We present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans. We also identify amino acid substitutions in Neandertals and present-day humans that may underlie phenotypic differences between the two groups. We find that genes involved in skeletal morphology have changed more in the lineage leading to Neandertals than in the ancestral lineage common to archaic and modern humans, whereas genes involved in behavior and pigmentation have changed more on the modern human lineage.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Nuclear and mitochondrial DNA sequences from two Denisovan individuals

Susanna Sawyer; Gabriel Renaud; Bence Viola; Jean-Jacques Hublin; Marie-Theres Gansauge; Michael V. Shunkov; A.P. Derevianko; Kay Prüfer; Janet Kelso; Svante Pääbo

Significance Denisovans are a sister group of Neandertals that were identified on the basis of a nuclear genome sequence from a bone from Denisova Cave (Siberia). The only other Denisovan specimen described to date is a molar from the same site. We present here nuclear DNA sequences from this molar and a morphological description, as well as mitochondrial and nuclear DNA sequences from another molar from Denisova Cave, thus extending the number of Denisovan individuals known to three. The nuclear DNA sequence diversity among the Denisovans is higher than among Neandertals, but lower than among present-day humans. The mtDNA of one molar has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over several millennia. Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.


Science | 2017

Neandertal and Denisovan DNA from Pleistocene sediments

Viviane Slon; Charlotte Hopfe; Clemens L. Weiß; Fabrizio Mafessoni; Marco de la Rasilla; Carles Lalueza-Fox; Antonio Rosas; Marie Soressi; Monika Knul; Rebecca Miller; John R. Stewart; A.P. Derevianko; Zenobia Jacobs; Bo Li; Richard G. Roberts; Michael V. Shunkov; Henry de Lumley; Christian Perrenoud; Ivan Gušić; Željko Kućan; Pavao Rudan; Ayinuer Aximu-Petri; Elena Essel; Sarah Nagel; Birgit Nickel; Anna Schmidt; Kay Prüfer; Janet Kelso; Hernán A. Burbano; Svante Pääbo

Tracing our ancestors in cave sediments Analysis of DNA from archaic hominids has illuminated human evolution. However, sites where thousand-year-old bones and other remains can be found are relatively rare. Slon et al. wanted to exploit any trace remains that our ancestors left behind. They looked for ancient DNA of hominids and other mammals in cave sediments, even those lacking skeletal remains. They identified mitochondrial DNA from Neandertal and Denisovan individuals in cave sediments at multiple sites. Science, this issue p. 605 DNA from archaic humans can be retrieved from Pleistocene sediments, even in the absence of their skeletal remains. Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found.


Scientific Reports | 2016

Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis

Samantha Brown; Thomas Higham; Viviane Slon; Svante Pääbo; Matthias Meyer; Katerina Douka; Fiona Brock; Daniel Comeskey; Noemi Procopio; Michael V. Shunkov; A.P. Derevianko; Michael Buckley

DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the site of Denisova Cave, Russia, in order to facilitate the discovery of human remains. As a result of our analysis a single hominin bone (Denisova 11) was identified, supported through in-depth peptide sequencing analysis, and found to carry mitochondrial DNA of the Neandertal type. Subsequent radiocarbon dating revealed the bone to be >50,000 years old. Here we demonstrate the huge potential collagen fingerprinting has for identifying hominin remains in highly fragmentary archaeological assemblages, improving the resources available for wider studies into human evolution.


Science Advances | 2017

A fourth Denisovan individual

Viviane Slon; Bence Viola; Gabriel Renaud; Marie-Theres Gansauge; Stefano Benazzi; Susanna Sawyer; Jean-Jacques Hublin; Michael V. Shunkov; A.P. Derevianko; Janet Kelso; Kay Prüfer; Matthias Meyer; Svante Pääbo

DNA retrieved from a tooth discovered deep in Denisova Cave allows us to assign it to the Denisovans, a group of archaic hominins. The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of “missing substitutions” in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations.

Collaboration


Dive into the Michael V. Shunkov's collaboration.

Top Co-Authors

Avatar

A.P. Derevianko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiaomei Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge