Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael W. Davidson is active.

Publication


Featured researches published by Michael W. Davidson.


Science | 2006

Imaging intracellular fluorescent proteins at nanometer resolution.

Eric Betzig; George H. Patterson; Rachid Sougrat; O. Wolf Lindwasser; Scott G. Olenych; Juan S. Bonifacino; Michael W. Davidson; Jennifer Lippincott-Schwartz; Harald F. Hess

We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to ∼2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method—termed photoactivated localization microscopy—to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.


Nature | 2010

Nanoscale architecture of integrin-based cell adhesions

Pakorn Kanchanawong; Gleb Shtengel; Ana M. Pasapera; Ericka B. Ramko; Michael W. Davidson; Harald F. Hess; Clare M. Waterman

Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing. Focal adhesions are multifunctional organelles that mediate cell–ECM adhesion, force transmission, cytoskeletal regulation and signalling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that form a <200-nm plaque linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a ∼40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin’s polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.


Nature Methods | 2008

Improving the photostability of bright monomeric orange and red fluorescent proteins

Nathan C. Shaner; Michael Z. Lin; Michael R. McKeown; Paul Steinbach; Kristin L. Hazelwood; Michael W. Davidson; Roger Y. Tsien

All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.


Journal of Cell Science | 2007

Advances in fluorescent protein technology.

Nathan C. Shaner; George H. Patterson; Michael W. Davidson

Current fluorescent protein (FP) development strategies are focused on fine-tuning the photophysical properties of blue to yellow variants derived from the Aequorea victoria jellyfish green fluorescent protein (GFP) and on the development of monomeric FPs from other organisms that emit in the yellow-orange to far-red regions of the visible light spectrum. Progress toward these goals has been substantial, and near-infrared emitting FPs may loom over the horizon. The latest efforts in jellyfish variants have resulted in new and improved monomeric BFP, CFP, GFP and YFP variants, and the relentless search for a bright, monomeric and fast-maturing red FP has yielded a host of excellent candidates, although none is yet optimal for all applications. Meanwhile, photoactivatable FPs are emerging as a powerful class of probes for intracellular dynamics and, unexpectedly, as useful tools for the development of superresolution microscopy applications.


Nature Methods | 2011

Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination

Thomas A. Planchon; Liang Gao; Daniel E. Milkie; Michael W. Davidson; James A. Galbraith; Catherine G. Galbraith; Eric Betzig

A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to ∼0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.

Gleb Shtengel; James A. Galbraith; Catherine G. Galbraith; Jennifer Lippincott-Schwartz; Jennifer M. Gillette; Suliana Manley; Rachid Sougrat; Clare M. Waterman; Pakorn Kanchanawong; Michael W. Davidson; Richard D. Fetter; Harald F. Hess

Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.


Science | 2014

Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution

Bi-Chang Chen; Wesley R. Legant; Kai Wang; Lin Shao; Daniel E. Milkie; Michael W. Davidson; Chris Janetopoulos; Xufeng S. Wu; John A. Hammer; Zhe Liu; Brian P. English; Yuko Mimori-Kiyosue; Daniel P. Romero; Alex T. Ritter; Jennifer Lippincott-Schwartz; Lillian K. Fritz-Laylin; R. Dyche Mullins; Diana M. Mitchell; Joshua N. Bembenek; Anne-Cécile Reymann; Ralph Böhme; Stephan W. Grill; Jennifer T. Wang; Geraldine Seydoux; U. Serdar Tulu; Daniel P. Kiehart; Eric Betzig

Introduction In vivo imaging provides a window into the spatially complex, rapidly evolving physiology of the cell that structural imaging alone cannot. However, observing this physiology directly involves inevitable tradeoffs of spatial resolution, temporal resolution, and phototoxicity. This is especially true when imaging in three dimensions, which is essential to obtain a complete picture of many dynamic subcellular processes. Although traditional in vivo imaging tools, such as widefield and confocal microscopy, and newer ones, such as light-sheet microscopy, can image in three dimensions, they sacrifice substantial spatiotemporal resolution to do so and, even then, can often be used for only very limited durations before altering the physiological state of the specimen. Lattice light-sheet microscopy. An ultrathin structured light sheet (blue-green, center) excites fluorescence (orange) in successive planes as it sweeps through a specimen (gray) to generate a 3D image. The speed, noninvasiveness, and high spatial resolution of this approach make it a promising tool for in vivo 3D imaging of fast dynamic processes in cells and embryos, as shown here in five surrounding examples. Lattice light-sheet microscopy. An ultrathin structured light sheet (blue-green, center) excites fluorescence (orange) in successive planes as it sweeps through a specimen (gray) to generate a 3D image. The speed, noninvasiveness, and high spatial resolution of this approach make it a promising tool for in vivo 3D imaging of fast dynamic processes in cells and embryos, as shown here in five surrounding examples. Rationale To address these limitations, we developed a new microscope using ultrathin light sheets derived from two-dimensional (2D) optical lattices. These are scanned plane-by-plane through the specimen to generate a 3D image. The thinness of the sheet leads to high axial resolution and negligible photobleaching and background outside of the focal plane, while its simultaneous illumination of the entire field of view permits imaging at hundreds of planes per second even at extremely low peak excitation intensities. By implementing either superresolution structured illumination or by dithering the lattice to create a uniform light sheet, we imaged cells and small embryos in three dimensions, often at subsecond intervals, for hundreds to thousands of time points at the diffraction limit and beyond. Results We demonstrated the technique on 20 different biological processes spanning four orders of magnitude in space and time, including the binding kinetics of single Sox2 transcription factor molecules, 3D superresolution photoactivated localization microscopy of nuclear lamins, dynamic organelle rearrangements and 3D tracking of microtubule plus ends during mitosis, neutrophil motility in a collagen mesh, and subcellular protein localization and dynamics during embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. Throughout, we established the performance advantages of lattice light-sheet microscopy compared with previous techniques and highlighted phenomena that, when seen at increased spatiotemporal detail, may hint at previously unknown biological mechanisms. Conclusion Photobleaching and phototoxicity are typically reduced by one to two orders of magnitude relative to that seen with a 1D scanned Bessel beam or the point array scanned excitation of spinning disk confocal microscopy. This suggests that the instantaneous peak power delivered to the specimen may be an even more important metric of cell health than the total photon dose and should enable extended 3D observation of endogenous levels of even sparsely expressed proteins produced by genome editing. Improvements of similar magnitude in imaging speed and a twofold gain in axial resolution relative to confocal microscopy yield 4D spatiotemporal resolution high enough to follow fast, nanoscale dynamic processes that would otherwise be obscured by poor resolution along one or more axes of spacetime. Last, the negligible background makes lattice light-sheet microscopy a promising platform for the extension of all methods of superresolution to larger and more densely fluorescent specimens and enables the study of signaling, transport, and stochastic self-assembly in complex environments with single-molecule sensitivity. From single molecules to embryos in living color Animation defines life, and the three-dimensional (3D) imaging of dynamic biological processes occurring within living specimens is essential to understand life. However, in vivo imaging, especially in 3D, involves inevitable tradeoffs of resolution, speed, and phototoxicity. Chen et al. describe a microscope that can address these concerns. They used a class of nondiffracting beams, known as 2D optical lattices, which spread the excitation energy across the entire field of view while simultaneously eliminating out-of-focus excitation. Lattice light sheets increase the speed of image acquisition and reduce phototoxicity, which expands the range of biological problems that can be investigated. The authors illustrate the power of their approach using 20 distinct biological systems ranging from single-molecule binding kinetics to cell migration and division, immunology, and embryonic development. Science, this issue 10.1126/science.1257998 A new microscope allows three-dimensional imaging of living systems at very high resolution in real time. Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.


PLOS Biology | 2011

A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms

Xiaokun Shu; Varda Lev-Ram; Thomas J. Deerinck; Yingchuan Qi; Ericka B. Ramko; Michael W. Davidson; Yishi Jin; Mark H. Ellisman; Roger Y. Tsien

Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce “miniSOG” (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes

Hari Shroff; Catherine G. Galbraith; James A. Galbraith; Helen White; Jennifer M. Gillette; Scott G. Olenych; Michael W. Davidson; Eric Betzig

Accurate determination of the relative positions of proteins within localized regions of the cell is essential for understanding their biological function. Although fluorescent fusion proteins are targeted with molecular precision, the position of these genetically expressed reporters is usually known only to the resolution of conventional optics (≈200 nm). Here, we report the use of two-color photoactivated localization microscopy (PALM) to determine the ultrastructural relationship between different proteins fused to spectrally distinct photoactivatable fluorescent proteins (PA-FPs). The nonperturbative incorporation of these endogenous tags facilitates an imaging resolution in whole, fixed cells of ≈20–30 nm at acquisition times of 5–30 min. We apply the technique to image different pairs of proteins assembled in adhesion complexes, the central attachment points between the cytoskeleton and the substrate in migrating cells. For several pairs, we find that proteins that seem colocalized when viewed by conventional optics are resolved as distinct interlocking nano-aggregates when imaged via PALM. The simplicity, minimal invasiveness, resolution, and speed of the technique all suggest its potential to directly visualize molecular interactions within cellular structures at the nanometer scale.


Nature Methods | 2009

A bright and photostable photoconvertible fluorescent protein

Sean A. McKinney; Christopher S. Murphy; Kristin L. Hazelwood; Michael W. Davidson; Loren L. Looger

Photoconvertible fluorescent proteins are potential tools for investigating dynamic processes in living cells and for emerging super-resolution microscopy techniques. Unfortunately, most probes in this class are hampered by oligomerization, small photon budgets or poor photostability. Here we report an EosFP variant that functions well in a broad range of protein fusions for dynamic investigations, exhibits high photostability and preserves the ∼10-nm localization precision of its parent.

Collaboration


Dive into the Michael W. Davidson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Allen

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Clare M. Waterman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Betzig

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Piston

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gaudenz Danuser

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge