Michael Wallis
University of Sussex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Wallis.
Journal of Mammary Gland Biology and Neoplasia | 2002
Isabel A. Forsyth; Michael Wallis
Growth hormone, prolactin, the fish hormone, somatolactin, and related mammalian placental hormones, including placental lactogen, form a family of polypeptide hormones that share a common tertiary structure. They produce their biological effects by interacting with and dimerizing specific single transmembrane-domain receptors. The receptors belong to a superfamily of cytokine receptors with no intrinsic tyrosine kinase, which use the Jak-Stat cascade as a major signalling pathway. Hormones and receptors are thought to have arisen as a result of gene duplication and subsequent divergence early in vertebrate evolution. Mammalian growth hormone and prolactin show a slow basal evolutionary rate of change, but with episodes of accelerated evolution. These occurred for growth hormone during the evolution of the primates and artiodactyls and for prolactin in lineages leading to rodents, elephants, ruminants, and man. Placental lactogen has probably evolved independently on three occasions, from prolactin in rodents and ruminants and from growth hormone in man. Receptor sequences also show variable rates of evolution, corresponding partly, but not completely, with changes in the ligand. A principal biological role of growth hormone, the control of postnatal growth, has remained quite consistent throughout vertebrate evolution and is largely mediated by insulin-like growth factors. Prolactin has many and diverse roles. In relation to lactation, the relative roles of growth hormone and prolactin vary between species. Correlation between the molecular and functional evolution of these hormones is very incomplete, and it is likely that many important functional adaptations involved changes in regulatory elements, for example, altering tissue of origin or posttranscriptional processing, rather than change of the structures of the proteins themselves.
Journal of Molecular Evolution | 1996
Michael Wallis
It has been demonstrated previously that in mammals the evolution of pituitary growth hormone shows an unusual pattern, with an underlying slow rate and at least two sustained bursts of rapid evolution (in the artiodactyls and primates), during which the rate increased at least 25-fold. It is demonstrated here that a similar pattern applies for growth hormone evolution throughout the vertebrates, with a basal rate similar to that seen in mammals, but bursts of rapid evolution in the amphibia and the elasmobranchs, and several bursts in the teleosts. The placental growth-hormone-like proteins of primates show a similar pattern. It is argued that the bursts of evolution seen for growth hormone are a consequence of selection and that this may reflect changes in the functions of the hormone additional to its basic growth-promoting actions.
FEBS Letters | 1973
Michael Wallis
Pituitary growth hormone is a protein hormone of monomer molecular weight about 20 000. Structural studies have been carried out on growth hormones from several species, and have demonstrated substantial specific variation. Several groups have studied the amino acid sequence of bovine growth hormone [ l71 ; SantomC et al. [3] gave an almost complete primary structure. However, the sequences proposed by different research groups differ substantially. In this paper, our work on the complete sequence of this hormone is summarized. Particular attention is paid to points of difference from the results of other workers. The determination of amino acid sequences for growth hormones from different species is of particular interest in relation to the molecular evolution of the hormone [5]. The availability of the sequences of growth hormones from several other species has been of help in confirming that of bovine growth hormone, by homology, but the data acquired for the bovine hormone is, by itself, sufficient to establish the complete primary structure.
Journal of Molecular Evolution | 1981
Michael Wallis
SummaryPituitary growth hormone and prolactin, together with the homologous placental hormones, comprise a family of related protein hormones. Complete or partial amino acid sequences of seven mammalian growth hormones, six mammalian prolactins and one placental lactogen are available, and have been compared. A phylogenetic tree has been constructed which describes the relationships within the family. At least two gene duplications have occurred during the evolution of these proteins. Rates of evolution in the family have been quite variable, the overall rate of evolution having been apparently fairly slow, but having increased markedly on several occasions, most notably in the evolution of human (and, on the basis of immunological relationships, probably other primate) growth hormones and rat (and possibly other rodent) prolactins.
Journal of Molecular Evolution | 1994
Michael Wallis
In mammals pituitary growth hormone (GH) shows a slow basal rate of evolution (0.22 ± 0.03 × 10−9 substitutions/amino acid site/year) which appears to have increased by at least 25–50-fold on two occasions, during the evolution of primates (to at least 10.8 ± 1.3 X 10−9 substitutions/amino acid site/year) and artiodactyl ruminants (to at least 5.6 ± 1.3 X 10−9 substitutions/amino acid site/year). That these rate increases are real, and not due to inadvertent comparison of nonorthologous genes, was established by showing that features of the GH gene sequences that are not expressed as mature hormone do not show corresponding changes in evolutionary rate. Thus, analysis of nonsynonymous substitutions in the coding sequence for the mature protein confirmed the rate increases seen in the primate and ruminant GHs, but analysis of nonsynonymous substitutions in the signal peptide sequence, synonymous substitutions in the coding sequence for signal peptide or mature protein, and 5′ and 3′ untranslated sequences showed no statistically significant changes in evolutionary rate. Evidence that the increases in evolutionary rate are probably due to positive selection is provided by the observation that in the cases of both ruminant and primate GHs the periods of rapid evolution were followed by a return to a slow rate similar to the basal rate seen in other mammalian GHs. Differences between the biological properties of GHs have been identified which may relate to these periods of rapid adaptive molecular evolution. On the basis of sequence data currently available (but excluding rodent GHs which show an intermediate rate, the basis of which is not clear) for most (≈90%) of evolutionary time mammalian GHs have been in the slow phase of evolution, with possibly most of the few amino acid substitutions that have occurred being neutral in nature. But most (≈80%) of the amino acid substitutions that have been introduced into GH during the course of mammalian evolution have been accepted during the rapid phases and were adaptive in nature.
Journal of Molecular Evolution | 2000
Michael Wallis
Abstract. Previous studies have shown that pituitary growth hormone displays an episodic pattern of evolution, with a slow underlying evolutionary rate and occasional sustained bursts of rapid change. The present study establishes that pituitary prolactin shows a similar pattern. During much of tetrapod evolution the sequence of prolactin has been strongly conserved, showing a slow basal rate of change (approx 0.27 × 109 substitutions/amino acid site/year). This rate has increased substantially (∼12- to 38-fold) on at least four occasions during eutherian evolution, during the evolution of primates, artiodactyls, rodents, and elephants. That these increases are real and not a consequence of inadvertant comparison of paralogous genes is shown (for at least the first three groups) by the fact that they are confined to mature protein coding sequence and not apparent in sequences coding for signal peptides or when synonymous substitutions are examined. Sequences of teleost prolactins differ markedly from those of tetrapods and lungfish, but during the course of teleost evolution the rate of change of prolactin has been less variable than that of growth hormone. It is concluded that the evolutionary pattern seen for prolactin shows long periods of near-stasis interrupted by occasional bursts of rapid change, resembling the pattern seen for growth hormone in general but not in detail. The most likely basis for these bursts appears to be adaptive evolution though the biological changes involved are relatively small.
Growth Hormone & Igf Research | 2009
Michael Wallis
The insulin-like growth factors (IGF-I and IGF-II) and insulin are related proteins that play an important role in regulation of metabolism and growth. In mammals these proteins are generally strongly conserved, though the sequence of insulin underwent periods of rapid change during the evolution of hystricomorph rodents and new-world monkeys (NWM). The availability of genomic sequence information for a number of mammals provides gene sequences for insulin and IGF precursors from several new species, and this has been used here to study the evolution of these proteins in primates. The sequence of insulin is strongly conserved in primates except for the branch leading to NWM - the sequence of marmoset insulin confirms the episode of rapid evolution in this lineage. Strongly conserved sequences are also seen for IGF-I and IGF-II, though for IGF-I (but not IGF-II) the marmoset sequence again shows an episode of fairly rapid evolution, paralleling the changes seen in insulin. Thus in NWM the sequences of insulin and IGF-I show a co-evolution that may reflect a coordinated change in the functional properties of these two molecules. The other components of the insulin and IGF precursors (signal peptides, E-domains of IGFs, insulin C-peptide) are much less strongly conserved, though to a variable extent. Signal peptides are generally quite variable, but the sequence encoding the N-terminal region of the unusually long signal peptide of IGF-I is strongly conserved, suggesting specific function(s), at least partly associated with nucleotide rather than protein sequence. The Ea domain of proIGF-I and the N-terminal end of the E-domain of proIGF-II are quite strongly conserved, which accords with reports of a biologically active peptide (preptin) derived from the latter. However, the C-terminal parts of the Eb and Ec domains of proIGF-I (produced by alternative splicing) are very variable, which is of interest in view of reports of peptides with important biological activities deriving from these regions.
Journal of Molecular Evolution | 2001
Michael Wallis
Abstract. Pituitary growth hormone (GH) and prolactin have been shown previously to display a pattern of evolution in which episodes of rapid change are imposed on a low underlying basal rate (near-stasis). This study was designed to explore whether a similar pattern is seen in the evolution of other protein hormones in mammals. Seven protein hormones were examined (with the common α-subunit of the glycoprotein hormones providing an additional polypeptide for analysis)—those for which sequences from at least four eutherian orders are available with a suitable non-eutherian outgroup. Six of these (GH, prolactin, insulin, parathyroid hormone, glycoprotein hormone α-subunit, and luteinizing hormone β-subunit) showed markedly variable evolutionary rates in each case with a pattern of a slow basal rate and bursts of rapid change, the precise positions of the bursts varying from protein to protein. Two protein hormones (follicle-stimulating hormone β-subunit and thyroid-stimulating hormone β-subunit) showed no significant rate variation. Based on the sequences currently available, and pooling data from all eight proteins, the phase of slow basal change occupied about 85% of the sampled evolutionary time, but most evolutionary change (about 62% of the substitutions accepted) occurred during the episodes of rapid change. It is concluded that, in mammals at least, a pattern of prolonged periods of near-stasis with occasional episodes of rapid change provides a better model of evolutionary change for protein hormones than the one of constant evolutionary rates that is commonly favored. The mechanisms underlying this episodic evolution are not yet clear, and it may be that they vary from one group to another; in some cases, positive selection appears to underlie bursts of rapid change. Where gene duplication is associated with a period of accelerated evolution this often occurs at the end rather than the beginning of the episode. To what extent the type of pattern seen for protein hormones can be extended to other proteins remains to be established.
FEBS Letters | 1974
Michael Wallis
Prolactin is a protein hormone from the anterior pituitary gland. It has a molecular weight of about 22 000. The amino acid sequence of ovine (sheep) prolactin has been determined [ 1,2] and structural studies on the bovine (ox) [3,4] and human [5,6] hormones have also been reported. Prolactin is structurally homologous with pituitary growth hormone, and comparative studies of amino acid sequences within this protein family provide an interesting example of protein hormone evolution. In this paper the author summarizes studies on the amino acid sequence of bovine prolactin. The sequence is complete except for assignment of a few amide groups.
FEBS Letters | 1984
Greg J. Law; Keith P. Ray; Michael Wallis
A synthetic form of human pancreatic growth hormone releasing factor (GRF‐44‐NH2) was shown to be a potent stimulator of growth hormone (GH) secretion and cellular cyclic AMP levels in cultured sheep pituitary cells. A small dose‐dependent stimulation of prolactin secretion was also observed. Somatostatin (0.5 μM) completely blocked the maximal GRF (1 nM)‐stimulated secretion without a significant effect on cyclic AMP levels. Dopamine (0.1 μM) inhibited the GRF‐elevated GH secretion by 50% and lowered cyclic AMP levels by 30%. Dopamine (0.1 μM) inhibition of basal prolactin secretion was not affected by GRF (1 nM). The data support the hypothesis that cyclic AMP is involved in the action of GRF but suggest that somatostatin can inhibit GRF‐induced secretion of GH independently of cyclic AMP.