Michael Way
Francis Crick Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Way.
Nature Cell Biology | 2000
Violaine Moreau; Friedrich Frischknecht; Inge Reckmann; Renaud Vincentelli; Gwénaël Rabut; Donn M. Stewart; Michael Way
Wiskott–Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP–WIP complex. We propose that the N-WASP–WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.
Journal of Virology | 2009
Andreas Pichlmair; Oliver Schulz; Choon-Ping Tan; Jan Rehwinkel; Hiroki Kato; Osamu Takeuchi; Shizuo Akira; Michael Way; Giampietro Schiavo; Caetano Reis e Sousa
ABSTRACT Recognition of virus presence via RIG-I (retinoic acid inducible gene I) and/or MDA5 (melanoma differentiation-associated protein 5) initiates a signaling cascade that culminates in transcription of innate response genes such as those encoding the alpha/beta interferon (IFN-α/β) cytokines. It is generally assumed that MDA5 is activated by long molecules of double-stranded RNA (dsRNA) produced by annealing of complementary RNAs generated during viral infection. Here, we used an antibody to dsRNA to show that the presence of immunoreactivity in virus-infected cells does indeed correlate with the ability of RNA extracted from these cells to activate MDA5. Furthermore, RNA from cells infected with encephalomyocarditis virus or with vaccinia virus and precipitated with the anti-dsRNA antibody can bind to MDA5 and induce MDA5-dependent IFN-α/β production upon transfection into indicator cells. However, a prominent band of dsRNA apparent in cells infected with either virus does not stimulate IFN-α/β production. Instead, stimulatory activity resides in higher-order structured RNA that contains single-stranded RNA and dsRNA. These results suggest that MDA5 activation requires an RNA web rather than simply long molecules of dsRNA.
Nature Cell Biology | 2001
Jens Rietdorf; Aspasia Ploubidou; Inge Reckmann; Anna Holmström; Friedrich Frischknecht; Markus Zettl; Timo Zimmermann; Michael Way
Vaccinia virus, a close relative of the causative agent of smallpox, exploits actin polymerization to enhance its cell-to-cell spread. We show that actin-based motility of vaccinia is initiated only at the plasma membrane and remains associated with it. There must therefore be another form of cytoplasmic viral transport, from the cell centre, where the virus replicates, to the periphery. Video analysis reveals that GFP-labelled intracellular enveloped virus particles (IEVs) move from their perinuclear site of assembly to the plasma membrane on microtubules. We show that the viral membrane protein A36R, which is essential for actin-based motility of vaccinia, is also involved in microtubule-mediated movement of IEVs. We further show that conventional kinesin is recruited to IEVs via the light chain TPR repeats and is required for microtubule-based motility of the virus. Vaccinia thus sequentially exploits the microtubule and actin cytoskeletons to enhance its cell-to-cell spread.
Immunity | 2012
Susan Ahrens; Santiago Zelenay; David Sancho; Pavel Hanč; Svend Kjær; Christoph Feest; Georgina Fletcher; Charlotte H. Durkin; Antonio Postigo; Mark Skehel; Facundo D. Batista; Barry J. Thompson; Michael Way; Caetano Reis e Sousa; Oliver Schulz
Sterile inflammation can be initiated by innate immune recognition of markers of tissue injury termed damage-associated molecular patterns (DAMPs). DAMP recognition by dendritic cells (DCs) has also been postulated to lead to T cell responses to foreign antigens in tumors or allografts. Many DAMPs represent intracellular contents that are released upon cell damage, notably after necrosis. In this regard, we have previously described DNGR-1 (CLEC9A) as a DC-restricted receptor specific for an unidentified DAMP that is exposed by necrotic cells and is necessary for efficient priming of cytotoxic T cells against dead cell-associated antigens. Here, we have shown that the DNGR-1 ligand is preserved from yeast to man and corresponds to the F-actin component of the cellular cytoskeleton. The identification of F-actin as a DNGR-1 ligand suggests that cytoskeletal exposure is a universal sign of cell damage that can be targeted by the innate immune system to initiate immunity.
Trends in Cell Biology | 2001
Freddy Frischknecht; Michael Way
A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia
The EMBO Journal | 2000
Aspasia Ploubidou; Violaine Moreau; Keith Ashman; Inge Reckmann; Cayetano Gonzalez; Michael Way
We examined the role of the microtubule cytoskeleton during vaccinia virus infection. We found that newly assembled virus particles accumulate in the vicinity of the microtubule‐organizing centre in a microtubule‐ and dynein–dynactin complex‐dependent fashion. Microtubules are required for efficient intracellular mature virus (IMV) formation and are essential for intracellular enveloped virus (IEV) assembly. As infection proceeds, the microtubule cytoskeleton becomes dramatically reorganized in a fashion reminiscent of overexpression of microtubule‐associated proteins (MAPs). Consistent with this, we report that the vaccinia proteins A10L and L4R have MAP‐like properties and mediate direct binding of viral cores to microtubules in vitro. In addition, vaccinia infection also results in severe reduction of proteins at the centrosome and loss of centrosomal microtubule nucleation efficiency. This represents the first example of viral‐induced disruption of centrosome function. Further studies with vaccinia will provide insights into the role of microtubules during viral pathogenesis and regulation of centrosome function.
Trends in Microbiology | 1997
Sally Cudmore; Inge Reckmann; Michael Way
Viruses succeed as intracellular parasites because of their ability to invade cells and appropriate the cellular machinery required during their life cycle. The actin cytoskeleton of the host cell does not escape viral infection unscathed, but is often co-opted by the virus at many different stages of its life cycle to facilitate the infection process.
The EMBO Journal | 2011
Mark P. Dodding; Michael Way
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin‐1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV‐1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule‐based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin‐1 motors are coordinated and regulated during bi‐directional transport.
Journal of Biological Chemistry | 2002
Stefanie Benesch; Silvia Lommel; Anika Steffen; Theresia E. B. Stradal; Niki Scaplehorn; Michael Way; Juergen Wehland; Klemens Rottner
Wiskott-Aldrich syndrome protein (WASP)/Scar family proteins promote actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex. While Scar/WAVE proteins are thought to be involved in lamellipodia protrusion, the hematopoietic WASP has been implicated in various actin-based processes such as chemotaxis, podosome formation, and phagocytosis. Here we show that the ubiquitously expressed N-WASP is essential for actin assembly at the surface of endomembranes induced as a consequence of increased phosphatidylinositol 4,5-biphosphate (PIP2) levels. This process resulting in the motility of intracellular vesicles at the tips of actin comets involved the recruitment of the Src homology 3 (SH3)-SH2 adaptor proteins Nck and Grb2 as well as of WASP interacting protein (WIP). Reconstitution of vesicle movement in N-WASP-defective cells by expression of various N-WASP mutant proteins revealed three independent domains capable of interaction with the vesicle surface, of which both the WH1 and the polyproline domains contributed significantly to N-WASP recruitment and/or activation. In contrast, the direct interaction of N-WASP with the Rho-GTPase Cdc42 was not required for reconstitution of vesicle motility. Our data reveal a distinct cellular phenotype for N-WASP loss of function, which adds to accumulating evidence that the proposed link between actin and membrane dynamics may, at least partially, be reflected by the actin-based movement of vesicles through the cytoplasm.
Current Opinion in Cell Biology | 2001
Aspasia Ploubidou; Michael Way
Abstract In the past decade, studies into the way in which intracellular bacterial pathogens hijack and subvert their hosts have provided many important insights into regulation of the actin cytoskeleton and cell motility, in addition to increasing our understanding of the infection process. Viral pathogens, however, may ultimately unlock more cellular secrets as they are even more dependent on their hosts during their life cycle.