Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Weinfeld is active.

Publication


Featured researches published by Michael Weinfeld.


Cell | 2001

XRCC1 Stimulates Human Polynucleotide Kinase Activity at Damaged DNA Termini and Accelerates DNA Single-Strand Break Repair

Claire J. Whitehouse; Richard M. Taylor; Angela Thistlethwaite; Hong Zhang; Feridoun Karimi-Busheri; Dana D Lasko; Michael Weinfeld; Keith W. Caldecott

XRCC1 protein is required for DNA single-strand break repair and genetic stability but its biochemical role is unknown. Here, we report that XRCC1 interacts with human polynucleotide kinase in addition to its established interactions with DNA polymerase-beta and DNA ligase III. Moreover, these four proteins are coassociated in multiprotein complexes in human cell extract and together they repair single-strand breaks typical of those induced by reactive oxygen species and ionizing radiation. Strikingly, XRCC1 stimulates the DNA kinase and DNA phosphatase activities of polynucleotide kinase at damaged DNA termini and thereby accelerates the overall repair reaction. These data identify a novel pathway for mammalian single-strand break repair and demonstrate a concerted role for XRCC1 and PNK in the initial step of processing damaged DNA ends.


Nature | 2005

Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1

Sherif F. El-Khamisy; Gulam Mustafa Saifi; Michael Weinfeld; Fredrik Johansson; Thomas Helleday; James R. Lupski; Keith W. Caldecott

Spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) is a neurodegenerative disease that results from mutation of tyrosyl phosphodiesterase 1 (TDP1). In lower eukaryotes, Tdp1 removes topoisomerase 1 (top1) peptide from DNA termini during the repair of double-strand breaks created by collision of replication forks with top1 cleavage complexes in proliferating cells. Although TDP1 most probably fulfils a similar function in human cells, this role is unlikely to account for the clinical phenotype of SCAN1, which is associated with progressive degeneration of post-mitotic neurons. In addition, this role is redundant in lower eukaryotes, and Tdp1 mutations alone confer little phenotype. Moreover, defects in processing or preventing double-strand breaks during DNA replication are most probably associated with increased genetic instability and cancer, phenotypes not observed in SCAN1 (ref. 8). Here we show that in human cells TDP1 is required for repair of chromosomal single-strand breaks arising independently of DNA replication from abortive top1 activity or oxidative stress. We report that TDP1 is sequestered into multi-protein single-strand break repair (SSBR) complexes by direct interaction with DNA ligase IIIα and that these complexes are catalytically inactive in SCAN1 cells. These data identify a defect in SSBR in a neurodegenerative disease, and implicate this process in the maintenance of genetic integrity in post-mitotic neurons.


The EMBO Journal | 2002

Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining

Claire Chappell; Les A. Hanakahi; Feridoun Karimi-Busheri; Michael Weinfeld; Stephen C. West

The efficient repair of double‐strand breaks (DSBs) in DNA is critical for the maintenance of genome stability. In mammalian cells, repair can occur by homologous recombination or by non‐homologous end joining (NHEJ). DNA breaks caused by reactive oxygen or ionizing radiation often contain non‐ conventional end groups that must be processed to restore the ligatable 3′‐OH and 5′‐phosphate moieties which are necessary for efficient repair by NHEJ. Here, using cell‐free extracts that efficiently catalyse NHEJ in vitro, we show that human polynucleotide kinase (PNK) promotes phosphate replacement at damaged termini, but only within the context of the NHEJ apparatus. Phosphorylation of terminal 5′‐OH groups by PNK was blocked by depletion of the NHEJ factor XRCC4, or by an inactivating mutation in DNA‐PKcs, indicating that the DNA kinase activity in the extract is coupled with active NHEJ processes. Moreover, we find that end‐joining activity can be restored to PNK‐depleted extracts by addition of human PNK, but not bacteriophage T4 PNK. This work provides the first demonstration of a direct, specific role for human PNK in DSB repair.


Chemical Reviews | 2013

Arsenic binding to proteins.

Shengwen Shen; Xing-Fang Li; William R. Cullen; Michael Weinfeld; X. Chris Le

Arsenic is a trace element found in the earth’s crust at an average concentration of ∼5 μg/g (ppm). Although its relative abundance in the earth’s crust is about 54th, arsenic can become concentrated in some parts of the world because of natural mineralization. Arsenic is a component of 245 minerals, associated most frequently with other metals such as copper, gold, lead, and zinc in sulfidic ores.1−3 When disturbed by natural processes, such as weathering, biological activity, and volcanic eruption, arsenic may be released into the environment. Anthropogenic activities, such as combustion of fossil fuels, mining, ore smelting, and well drilling, also mobilize and introduce arsenic into the environment. Chronic exposure to arsenic from groundwater has been recognized to cause the largest environmental health disaster in the world, putting more than 100 million people at risk of cancer and other arsenic-related diseases.4,5 Because of its prevalence in the environment, potential for human exposure, and the magnitude and severity of health problems it causes, the United States Agency for Toxic Substances and Disease Registry (ATSDR) has ranked arsenic as No. 1 on its Priority List of Hazardous Substances for many years. The recent priority list, posted in 2011 (http://www.atsdr.cdc.gov/SPL/index.html), shows arsenic as No. 1, ahead of lead, mercury, and polychlorinated biphenyls (PCBs). Epidemiological studies of populations exposed to high levels of arsenic due to ingestion from water, including those from Taiwan,6−8 Argentina,9,10 Chile,11,12 West Bengal, India,13,14 Bangladesh,15−17 and Inner Mongolia, China,18,19 have repeatedly shown strong associations between the exposure to high concentrations of arsenic and the prevalence of several cancers,20−23 most severely bladder, lung, and skin cancers. Arsenic is classified as a human carcinogen by the International Agency for Research on Cancer (IARC) and the U.S. Environmental Protection Agency (EPA). Chronic exposure to elevated concentrations of arsenic has also been associated with the increased risk of a number of noncancerous effects.24−27 Although the adverse health effects arising from exposure to arsenic have been well-recognized, the mechanism(s) of action responsible for the diverse range of health effects are complicated and poorly understood.26−30 It is believed that inorganic arsenate (HAsO42-), which is a molecular analogue of phosphate (HPO42-), can compete for phosphate anion transporters and replace phosphate in some biochemical reactions.28 For example, generation of adenosine-5′-triphosphate (ATP) during oxidative phosphorylation can be inhibited by the replacement of phosphate with arsenate. Depletion of ATP by arsenate has been observed in cellular systems.28 However, the replacement of phosphate in DNA by arsenic is not firmly established.31−35 The toxicity of trivalent arsenicals likely occurs through the interaction of trivalent arsenic species with sulfhydryl groups in proteins. Arsenic binding to a specific protein could alter the conformation and function of the protein as well as its recruitment of and interaction with other functional proteins. Therefore, there has been much emphasis on studies of arsenic binding to proteins, for the purpose of understanding arsenic toxicity and developing arsenic-based therapeutics. This review summarizes various aspects of arsenic binding to proteins. It discusses the chemical basis and biological implications and consequences of arsenic binding to proteins. It also describes analytical techniques and the characterization of arsenic binding, including the binding affinity, kinetics, and speciation.


The EMBO Journal | 2004

Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV

C.A. Koch; Roger Agyei; Sarah Galicia; Pavel Metalnikov; Paul O'Donnell; Andrei Starostine; Michael Weinfeld; Daniel Durocher

Nonhomologous end joining (NHEJ) is the major DNA double‐strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4–DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing radiation‐induced 5′‐OH and 3′‐phosphate DNA termini, functions in NHEJ via an FHA‐dependent interaction with CK2‐phosphorylated Xrcc4. Analysis of the PNK FHA–Xrcc4 interaction revealed that the PNK FHA domain binds phosphopeptides with a unique selectivity among FHA domains. Disruption of the Xrcc4–PNK interaction in vivo is associated with increased radiosensitivity and slower repair kinetics of DSBs, in conjunction with a diminished efficiency of DNA end joining in vitro. Therefore, these results suggest a new role for Xrcc4 in the coordination of DNA end processing with DNA ligation.


Journal of Biological Chemistry | 1999

Molecular characterization of a human DNA kinase.

Feridoun Karimi-Busheri; G. Daly; P. Robins; B. Canas; Darryl Pappin; J. Sgouros; G. G. Miller; H. Fakhrai; E. M. Davis; M. M. Le Beau; Michael Weinfeld

Human polydeoxyribonucleotide kinase is an enzyme that has the capacity to phosphorylate DNA at 5′-hydroxyl termini and dephosphorylate 3′-phosphate termini and, therefore, can be considered a putative DNA repair enzyme. The enzyme was purified from HeLa cells. Amino acid sequence was obtained for several tryptic fragments by mass spectrometry. The sequences were matched through the dbEST data base with an incomplete human cDNA clone, which was used as a probe to retrieve the 5′-end of the cDNA sequence from a separate cDNA library. The complete cDNA, which codes for a 521-amino acid protein (57.1 kDa), was expressed in Escherichia coli, and the recombinant protein was shown to possess the kinase and phosphatase activities. Comparison with other sequenced proteins identified a P-loop motif, indicative of an ATP-binding domain, and a second motif associated with several different phosphatases. There is reasonable sequence similarity to putative open reading frames in the genomes ofCaenorhabditis elegans and Schizosaccharomyces pombe, but similarity to bacteriophage T4 polynucleotide kinase is limited to the kinase and phosphatase domains noted above. Northern hybridization revealed a major transcript of approximately 2.3 kilobases and a minor transcript of approximately 7 kilobases. Pancreas, heart, and kidney appear to have higher levels of mRNA than brain, lung, or liver. Confocal microscopy of human A549 cells indicated that the kinase resides predominantly in the nucleus. The gene encoding the enzyme was mapped to chromosome band 19q13.4.


DNA Repair | 2003

Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdp1) for the repair of topoisomerase I-mediated DNA lesions

Isabelle Plo; Zhi-Yong Liao; Juana M. Barceló; Glenda Kohlhagen; Keith W. Caldecott; Michael Weinfeld; Yves Pommier

DNA topoisomerase I (Top1) is converted into a cellular poison by camptothecin (CPT) and various endogenous and exogenous DNA lesions. In this study, we used X-ray repair complementation group 1 (XRCC1)-deficient and XRCC1-complemented EM9 cells to investigate the mechanism by which XRCC1 affects the cellular responses to Top1 cleavage complexes induced by CPT. XRCC1 complementation enhanced survival to CPT-induced DNA lesions produced independently of DNA replication. CPT-induced comparable levels of Top1 cleavage complexes (single-strand break (SSB) and DNA-protein cross-links (DPC)) in both XRCC1-deficient and XRCC1-complemented cells. However, XRCC1-complemented cells repaired Top1-induced DNA breaks faster than XRCC1-deficient cells, and exhibited enhanced tyrosyl DNA phosphodiesterase (Tdp1) and polynucleotide kinase phosphatase (PNKP) activities. XRCC1 immunoprecipitates contained Tdp1 polypeptide, and both Tdp1 and PNKP activities, indicating a functional connection between the XRCC1 single-strand break repair pathway and the repair of Top1 covalent complexes by Tdp1 and PNKP.


The EMBO Journal | 2002

Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols

Masashi Takao; Shin-ichiro Kanno; Tatsuya Shiromoto; Rei Hasegawa; Hiroshi Ide; Shogo Ikeda; Altraf H. Sarker; Shuji Seki; James Xing; X. Chris Le; Michael Weinfeld; Kumiko Kobayashi; Jun-ichi Miyazaki; Manja Muijtjens; Jan H.J. Hoeijmakers; Gijsbertus T. J. van der Horst; Akira Yasui

Endonuclease III, encoded by nth in Escherichia coli, removes thymine glycols (Tg), a toxic oxidative DNA lesion. To determine the biological significance of this repair in mammals, we established a mouse model with mutated mNth1, a homolog of nth, by gene targeting. The homozygous mNth1 mutant mice showed no detectable phenotypical abnormality. Embryonic cells with or without wild‐type mNth1 showed no difference in sensitivity to menadione or hydrogen peroxide. Tg produced in the mutant mouse liver DNA by X‐ray irradiation disappeared with time, though more slowly than in the wild‐type mouse. In extracts from mutant mouse liver, we found, instead of mNTH1 activity, at least two novel DNA glycosylase activities against Tg. One activity is significantly higher in the mutant than in wild‐type mouse in mitochondria, while the other is another nuclear glycosylase for Tg. These results underscore the importance of base excision repair of Tg both in the nuclei and mitochondria in mammals.


Journal of Biological Chemistry | 1997

Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonuclease III with bistranded abasic sites in DNA.

Chaudhry Ma; Michael Weinfeld

Several oxidative DNA-damaging agents, including ionizing radiation, can generate multiply damaged sites in DNA. Among the postulated lesions are those with abasic sites located in close proximity on opposite strands. The repair of an abasic site requires strand scission by a repair endonuclease such as human apurinic/apyrimidinic endonuclease (Ape) or exonuclease III inEscherichia coli. Therefore, a potential consequence of the “repair” of bistranded abasic sites is the formation of double-strand breaks. To test this possibility and to investigate the influence of the relative distance between the two abasic sites and their orientation to each other, we prepared a series of oligonucleotide duplexes containing abasic sites at defined positions either directly opposite each other or separated by 1, 3, or 5 base pairs in the 5′- or 3′-direction. Analysis following Ape and exonuclease III treatment of these substrates indicated a variety of responses. In general, cleavage at abasic sites was slower in duplexes with paired lesions than in control duplexes with single lesions. Double-strand breaks were, however, readily generated in duplexes with abasic sites positioned 3′ to each other. With the duplex containing abasic sites set 1 base pair apart, 5′ to each other, both Ape and exonuclease III slowly cleaved the abasic site on one strand only and were unable to incise the other strand. With the duplex containing abasic sites set 3 base pairs apart, 5′ to each other, Ape protein was unable to cleave either strand. These data suggest that closely positioned abasic sites could have several deleterious consequences in the cell. In addition, this approach has allowed us to map bases that make significant contact with the enzymes when acting on an abasic site on the opposite strand.


Journal of Biological Chemistry | 2011

XRCC4 Protein Interactions with XRCC4-like Factor (XLF) Create an Extended Grooved Scaffold for DNA Ligation and Double Strand Break Repair.

Michal Hammel; Martial Rey; Yaping Yu; Rajam S. Mani; Scott Classen; Mona Liu; Michael E. Pique; Shujuan Fang; Brandi L. Mahaney; Michael Weinfeld; David C. Schriemer; Susan P. Lees-Miller; John A. Tainer

The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 (“Leu-lock”) inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric β-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.

Collaboration


Dive into the Michael Weinfeld's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Lee

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge