Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Westerman is active.

Publication


Featured researches published by Michael Westerman.


Science | 2011

Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification.

Robert W. Meredith; Jan E. Janecka; John Gatesy; Oliver A. Ryder; Colleen A. Fisher; Emma C. Teeling; Alisha Goodbla; Eduardo Eizirik; Taiz L. L. Simão; Tanja Stadler; Daniel L. Rabosky; Rodney L. Honeycutt; John J. Flynn; Colleen M. Ingram; Cynthia C. Steiner; Tiffani L. Williams; Terence J. Robinson; Angela Burk-Herrick; Michael Westerman; Nadia A. Ayoub; Mark S. Springer; William J. Murphy

Molecular phylogenetic analysis, calibrated with fossils, resolves the time frame of the mammalian radiation. Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods. Relaxed clock analyses support the long-fuse model of diversification and highlight the importance of including multiple fossil calibrations that are spread across the tree. Molecular time trees and diversification analyses suggest important roles for the Cretaceous Terrestrial Revolution and Cretaceous-Paleogene (KPg) mass extinction in opening up ecospace that promoted interordinal and intraordinal diversification, respectively. By contrast, diversification analyses provide no support for the hypothesis concerning the delayed rise of present-day mammals during the Eocene Period.


Journal of Molecular Evolution | 1998

CONFLICT AMONG INDIVIDUAL MITOCHONDRIAL PROTEINS IN RESOLVING THE PHYLOGENY OF EUTHERIAN ORDERS

Axel Janke; Peter J. Waddell; Michael Westerman; Osamu Takenaka; Shigenori Murata; Norihiro Okada; Svante Pääbo; Masami Hasegawa

Abstract. The phylogenetic relationship among primates, ferungulates (artiodactyls + cetaceans + perissodactyls + carnivores), and rodents was examined using proteins encoded by the H strand of mtDNA, with marsupials and monotremes as the outgroup. Trees estimated from individual proteins were compared in detail with the tree estimated from all 12 proteins (either concatenated or summing up log-likelihood scores for each gene). Although the overall evidence strongly suggests ((primates, ferungulates), rodents), the ND1 data clearly support another tree, ((primates, rodents), ferungulates). To clarify whether this contradiction is due to (1) a stochastic (sampling) error; (2) minor model-based errors (e.g., ignoring site rate variability), or (3) convergent and parallel evolution (specifically between either primates and rodents or ferungulates and the outgroup), the ND1 genes from many additional species of primates, rodents, other eutherian orders, and the outgroup (marsupials + monotremes) were sequenced. The phylogenetic analyses were extensive and aimed to eliminate the following artifacts as possible causes of the aberrant result: base composition biases, unequal site substitution rates, or the cumulative effects of both. Neither more sophisticated evolutionary analyses nor the addition of species changed the previous conclusion. That is, the statistical support for grouping rodents and primates to the exclusion of all other taxa fluctuates upward or downward in quite a tight range centered near 95% confidence. These results and a site-by-site examination of the sequences clearly suggest that convergent or parallel evolution has occurred in ND1 between primates and rodents and/or between ferungulates and the outgroup. While the primate/rodent grouping is strange, ND1 also throws some interesting light on the relationships of some eutherian orders, marsupials, and montremes. In these parts of the tree, ND1 shows no apparent tendency for unexplained convergences.


Journal of Mammalian Evolution | 2008

A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes

Robert W. Meredith; Michael Westerman; Judd A. Case; Mark S. Springer

Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. Within the Australasian clade, Diprotodontia is the sister taxon to a Notoryctemorphia + Dasyuromorphia + Peramelemorphia clade. Within the Diprotodontia, Vombatiformes (wombat + koala) is the sister taxon to a paraphyletic possum group (Phalangeriformes) with kangaroos nested inside. Molecular dating analyses suggest Late Cretaceous/Paleocene dates for all interordinal divergences. All intraordinal divergences were placed in the mid to late Cenozoic except for the deepest splits within the Diprotodontia. Our UBBL estimates of the marsupial fossil record indicate that the South American record is approximately as complete as the Australasian record.


Molecular Phylogenetics and Evolution | 2003

Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials

Heather Amrine-Madsen; Mark Scally; Michael Westerman; Michael J. Stanhope; Carey Krajewski; Mark S. Springer

Relationships among the seven extant orders of marsupials remain poorly understood. Most classifications recognize a fundamental split between Ameridelphia, which contains the American orders Didelphimorphia and Paucituberculata, and Australidelphia, which contains four Australasian orders (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelina) and the South American order Microbiotheria, represented by Dromiciops gliroides. Ameridelphia and Australidelphia are each supported by key morphological characters with dichotomous character states. To date, molecular studies indexing all marsupial orders have reported inconclusive results. However, several studies have suggested that Dromiciops is nested within Australidelphia. This result has important implications for understanding the biogeographic history of living marsupials. To address questions in higher-level marsupial systematics, we sequenced portions of five nuclear genes (Apolipoprotein B gene; Breast and Ovarian cancer susceptibility gene 1; Recombination activating gene 1; Interphotoreceptor retinoid binding protein gene; and von Willebrand factor gene) for representatives of all orders of marsupials, as well as placental outgroups. The resulting 6.4kb concatenation was analyzed using maximum parsimony, distance methods, maximum likelihood, and Bayesian methods. tests were used to examine a priori hypotheses. All analyses provided robust support for the monophyly of Australidelphia (bootstrap support=99-100%; posterior probability=1.00). Ameridelphia received much lower support, although this clade was not rejected in statistical tests. Within Diprotodontia, both Vombatiformes and Phalangeriformes were supported at the 100% bootstrap level and with posterior probabilities of 1.00.


Australian Journal of Zoology | 2008

A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes : Marsupialia) based on nuclear DNA sequences

Robert W. Meredith; Michael Westerman; Mark S. Springer

Kangaroos and kin (Macropodiformes) are the most conspicuous elements of the Australasian marsupial fauna. The approximately 70 living species can be divided into three families: (1) Hypsiprymnodontidae (the musky rat kangaroo); (2) Potoroidae (potoroos and bettongs); and (3) Macropodidae (larger kangaroos, wallabies, banded hare wallaby and pademelons). Here we examine macropodiform relationships using protein-coding portions of the ApoB, BRCA1, IRBP, Rag1 and vWF genes via maximum parsimony, maximum likelihood and Bayesian methods. We estimate times of divergence using two different relaxed molecular clock methods to present a timescale for macropodiform evolution and reconstruct ancestral states for grades of dental organisation. We find robust support for a basal split between Hypsiprymnodontidae and the other macropodiforms, potoroid monophyly and macropodid monophyly, with Lagostrophus as the sister-taxon to all other macropodids. Our divergence estimates suggest that kangaroos diverged from Phalangeroidea in the early Eocene, that crown-group Macropodiformes originated in the late Eocene or early Oligocene and that the potoroid–macropodid split occurred in the late Oligocene or early Miocene followed by rapid cladogenesis within these families 5 to 15 million years ago. These divergence estimates coincide with major geological and ecological changes in Australia. Ancestral state reconstructions for grades of dental organisation suggest that the grazer grade evolved independently on two different occasions within Macropodidae.


Proceedings of the Royal Society of London B: Biological Sciences | 1998

The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic monito del monte and marsupial mole

Mark S. Springer; Michael Westerman; John R. Kavanagh; Angela Burk; Michael O. Woodburne; Diana J. Kao; Carey Krajewski

Alternative hypotheses in higher–level marsupial systematics have different implications for marsupial origins, character evolution, and biogeography. Resolving the position of the South American monito del monte (Order Microbiotheria) is of particular importance in that alternate hypotheses posit sister-group relationships between microbiotheres and taxa with disparate temporal and geographic distributions: pediomyids; didelphids; dasyuromorphians; diprotodontians; all other australidelphians; and all other marsupials. Among Australasian marsupials, the placement of bandicoots is critical; competing views associate bandicoots with particular Australasian taxa (diprotodontians, dasyuromorphians) or outside of a clade that includes all other Australasian forms and microbiotheres. Affinities of the marsupial mole are also unclear. The mole is placed in its own order (Notoryctemorphia) and sister–group relationships have been postulated between it and each of the other Australasian orders. We investigated relationships among marsupial orders by using a data set that included mitochondrial and nuclear genes. Phylogenetic analyses provide support for the association of microbiotheres with Australasian marsupials and an association of the marsupial mole with dasyuromorphs. Statistical tests reject the association of diprotodontians and bandicoots together as well as the monophyly of Australasian marsupials. The origin of the paraphyletic Australasian marsupial fauna may be accounted for by (i) multiple entries of australidelphians into Australia or (ii) bidirectional dispersal of australidelphians between Antarctica and Australia.


Journal of Molecular Evolution | 2002

Phylogenetic Analysis of 18S rRNA and the Mitochondrial Genomes of the Wombat, Vombatus ursinus, and the Spiny Anteater, Tachyglossus aculeatus: Increased Support for the Marsupionta Hypothesis

Axel Janke; Ola Magnell; Georg Wieczorek; Michael Westerman; Ulfur Arnason

Abstract. The monotremes, the duck-billed platypus and the echidnas, are characterized by a number of unique morphological characteristics, which have led to the common belief that they represent the living survivors of an ancestral stock of mammals. Analysis of new data from the complete mitochondrial (mt) genomes of a second monotreme, the spiny anteater, and another marsupial, the wombat, yielded clear support for the Marsupionta hypothesis. According to this hypothesis marsupials are more closely related to monotremes than to eutherians, consistent with a basal split between eutherians and marsupials/monotremes among extant mammals. This finding was also supported by analysis of new sequences from a nuclear gene—18S rRNA. The mt genome of the wombat shares some unique features with previously described marsupial mtDNAs (tRNA rearrangement, a missing tRNALys, and evidence for RNA editing of the tRNAAsp). Molecular estimates of genetic divergence suggest that the divergence between the platypus and the spiny anteater took place ≈34 million years before present (MYBP), and that between South American and Australian marsupials ≈72 MYBP.


Journal of Mammalian Evolution | 1994

Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation

Mark S. Springer; Michael Westerman; John A. W. Kirsch

Part of the mitochondrial 12S ribosomal RNA gene was amplified and sequenced for 26 marsupials. Multiple alignments for these sequences as well as seven additional sequences taken from GenBank were obtained using CLUSTAL. PAUP was used for phylogenetic analysis and to obtain random tree-length distributions. Analyses were performed with and without phylogenetic constraints. Our results clearly show that 12S rDNA contains phylogenetic signal at and above the ordinal level and is thus appropriate for addressing phylogenetic questions deep in the mammalian tree. Standard parsimony analyses provide some support for a clade containing diprotodontians, dasyurids,Dromiciops, andNotoryctes; transversion parsimony analysis suggests the possible inclusion of peramelids as well. Within the Diprotodontia, vombatids and phascolarctids cluster together on transversion parsimony and phalangerids may be associated with this clade. The enigmatic tarsipedids are apparently part of a clade that also contains pseudocheirids, petaurids, and acrobatids. The 12S sequences suggest that the origination of extant marsupial orders peaked 15 million years later than the equivalent taxonomic diversification of extant placental orders and may be entirely post-Cretaceous. Families of diprotodontian marsupials originated during the Eocene and early Oligocene, which is consistent with previous single-copy DNA hybridization results.


Molecular Phylogenetics and Evolution | 2009

A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes

Robert W. Meredith; Michael Westerman; Mark S. Springer

Even though the marsupial order Diprotodontia is one of the most heavily studied groups of Australasian marsupials, phylogenetic relationships within this group remain contentious. The more than 125 living species of Diprotodontia can be divided into two main groups: Vombatiformes (wombats and koalas) and Phalangerida. Phalangerida is composed of the kangaroos (Macropodidae, Potoroidae, and Hypsiprymnodontidae) and possums (Phalangeridae, Burramyidae, Petauridae, Pseudocheiridae, Tarsipedidae, and Acrobatidae). Much of the debate has focused on relationships among the families of possums and whether possums are monophyletic or paraphyletic. A limitation of previous investigations is that no study to date has investigated diprotodontian relationships using all genera. Here, we examine diprotodontian interrelationships using a nuclear multigene molecular data set representing all recognized extant diprotodontian genera. Maximum parsimony, maximum likelihood, and Bayesian methods were used to analyze sequence data obtained from protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF. We also applied a Bayesian relaxed molecular clock method to estimate times of divergence. Diprotodontia was rooted between Vombatiformes and Phalangerida. Within Phalangerida, the model-based methods strongly support possum paraphyly with Phalangeroidea (Burramyidae+Phalangeridae) grouping with the kangaroos (Macropodiformes) to the exclusion of Petauroidea (Tarsipedidae, Acrobatidae, Pseudocheiridae, and Petauridae). Within Petauroidea, Tarsipedidae grouped with both Petauridae and Pseudocheiridae to the exclusion of Acrobatidae. Our analyses also suggest that the diprotodontian genera Pseudochirops and Strigocuscus are paraphyletic and diphyletic, respectively, as currently recognized. Dating analyses suggest Diprotodontia diverged from other australidelphians in the late Paleocene to early Eocene with all interfamilial divergences occurring prior to the early Miocene except for the split between the Potoroidae and Macropodidae, which occurred sometime in the mid-Miocene. Ancestral state reconstructions using a Bayesian method suggest that the patagium evolved independently in the Acrobatidae, Petauridae, and Pseudocheiridae. Ancestral state reconstructions of ecological venue suggest that the ancestor of Diprotodontia was arboreal. Within Diprotodontia, the common ancestor of Macropodidae was reconstructed as terrestrial, suggesting that tree kangaroos (Dendrolagus) are secondarily arboreal.


Proceedings of the Royal Society of London B: Biological Sciences | 1997

DNA phylogeny of the marsupial wolf resolved

Carey Krajewski; Larry Buckley; Michael Westerman

The phylogenetic position of the recently extinct marsupial ‘wolf’, or thylacine (Thylacinus cynocephalus), has been a source of contention in mammalian systematics for nearly a century. Thylacines were endemic to Australia, but possessed striking anatomical similarities to Oligo–Miocene borhyaenid marsupials of adaptation to South America. At issue has been whether these features are indicative of common ancestry or convergent adaptation to carnivory. Recent morphological studies have supported both conclusions. Although current marsupial classifications group thylacines with Australian dasyuromorphians, this putative clade is characterized by mostly primitive morphological features. Attempts to determine thylacine affinities with ancient protein and DNA analyses have supported, but not resolved, a dasyuromorphian placement. We report 1546bp of mitochondrial DNA sequence (from cytochrome band 12S rRNA genes) and 841 bp of nuclear protamine gene sequence from the thylacine and representatives of all or most other marsupial orders. Phylogenetic analysis of these sequences shows unambiguously that thylacines are are members of Dasyuromorphia, and suggests a late Oligocene or very early Miocene divergence of familial lineages.

Collaboration


Dive into the Michael Westerman's collaboration.

Top Co-Authors

Avatar

Carey Krajewski

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry Buckley

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Carey Krajewski

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Burk

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge