Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Widmann is active.

Publication


Featured researches published by Michael Widmann.


BMC Structural Biology | 2010

Prediction and analysis of the modular structure of cytochrome P450 monooxygenases

Demet Sirim; Michael Widmann; Florian Wagner; Jürgen Pleiss

BackgroundCytochrome P450 monooxygenases (CYPs) form a vast and diverse family of highly variable sequences. They catalyze a wide variety of oxidative reactions and are therefore of great relevance in drug development and biotechnological applications. Despite their differences in sequence and substrate specificity, the structures of CYPs are highly similar. Although being in research focus for years, factors mediating selectivity and activity remain vague.DescriptionThis systematic comparison of CYPs based on the Cytochrome P450 Engineering Database (CYPED) involved sequence and structure analysis of more than 8000 sequences. 31 structures have been applied to generate a reliable structure-based HMM profile in order to predict structurally conserved regions. Therefore, it was possible to automatically transfer these modules on CYP sequences without any secondary structure information, to analyze substrate interacting residues and to compare interaction sites with redox partners.ConclusionsFunctionally relevant structural sites of CYPs were predicted. Regions involved in substrate binding were analyzed in all sequences among the CYPED. For all CYPs that require a reductase, two reductase interaction sites were identified and classified according to their length. The newly gained insights promise an improvement of engineered enzyme properties for potential biotechnological application. The annotated sequences are accessible on the current version of the CYPED. The prediction tool can be applied to any CYP sequence via the web interface at http://www.cyped.uni-stuttgart.de/cgi-bin/strpred/dosecpred.pl.


BMC Genomics | 2010

Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A

Michael Widmann; P. Benjamin Juhl; Jürgen Pleiss

BackgroundThe Lipase Engineering Database (LED) integrates information on sequence, structure and function of lipases, esterases and related proteins with the α/β hydrolase fold. A new superfamily for Candida antarctica lipase A (CALA) was introduced including the recently published crystal structure of CALA. Since CALA has a highly divergent sequence in comparison to other α/β hydrolases, the Lipase Engineering Database was used to classify CALA in the frame of the already established classification system. This involved the comparison of CALA to similar structures as well as sequence-based comparisons against the content of the LED.ResultsThe new release 3.0 (December 2009) of the Lipase Engineering Database contains 24783 sequence entries for 18585 proteins as well as 656 experimentally determined protein structures, including the structure of CALA. In comparison to the previous release [1] with 4322 protein and 167 structure entries this update represents a significant increase in data volume. By comparing CALA to representative structures from all superfamilies, a structure from the deacetylase superfamily was found to be most similar to the structure of CALA. While the α/β hydrolase fold is conserved in both proteins, the major difference is found in the cap region. Sequence alignments between both proteins show a sequence similarity of only 15%. A multisequence alignment of both protein families was used to create hidden Markov models for the cap region of CALA and showed that the cap region of CALA is unique among all other proteins of the α/β hydrolase fold. By specifically comparing the substrate binding pocket of CALA to other binding pockets of α/β hydrolases, the binding pocket of Candida rugosa lipase was identified as being highly similar. This similarity also applied to the lid of Candida rugosa lipase in comparison to the potential lid of CALA.ConclusionThe LED serves as a valuable tool for the systematic analysis of single proteins or protein families. The updated release 3.0 was used for the evaluation of α/β hydrolases. The HTML version of the database with new features is available at http://www.led.uni-stuttgart.de and provides sequences, structures and a set of analysis tools including phylogenetic trees and HMM profiles


BMC Biochemistry | 2010

The Thiamine diphosphate dependent Enzyme Engineering Database: A tool for the systematic analysis of sequence and structure relations

Michael Widmann; Robert Radloff; Jürgen Pleiss

BackgroundThiamine diphosphate (ThDP)-dependent enzymes form a vast and diverse class of proteins, catalyzing a wide variety of enzymatic reactions including the formation or cleavage of carbon-sulfur, carbon-oxygen, carbon-nitrogen, and especially carbon-carbon bonds. Although very diverse in sequence and domain organisation, they share two common protein domains, the pyrophosphate (PP) and the pyrimidine (PYR) domain. For the comprehensive and systematic comparison of protein sequences and structures the Thiamine diphosphate (ThDP)-dependent Enzyme Engineering Database (TEED) was established.DescriptionThe TEED http://www.teed.uni-stuttgart.de contains 12048 sequence entries which were assigned to 9443 different proteins and 379 structure entries. Proteins were assigned to 8 different superfamilies and 63 homologous protein families. For each family, the TEED offers multisequence alignments, phylogenetic trees, and family-specific HMM profiles. The conserved pyrophosphate (PP) and pyrimidine (PYR) domains have been annotated, which allows the analysis of sequence similarities for a broad variety of proteins. Human ThDP-dependent enzymes are known to be involved in many diseases. 20 different proteins and over 40 single nucleotide polymorphisms (SNPs) of human ThDP-dependent enzymes were identified in the TEED.ConclusionsThe online accessible version of the TEED has been designed to serve as a navigation and analysis tool for the large and diverse family of ThDP-dependent enzymes.


BMC Genomics | 2008

Analysis of the distribution of functionally relevant rare codons

Michael Widmann; Marie Clairo; Jürgen Dippon; Jürgen Pleiss

BackgroundThe substitution of rare codons with more frequent codons is a commonly applied method in heterologous gene expression to increase protein yields. However, in some cases these substitutions lead to a decrease of protein solubility or activity. To predict these functionally relevant rare codons, a method was developed which is based on an analysis of multisequence alignments of homologous protein families.ResultsThe method successfully predicts functionally relevant codons in fatty acid binding protein and chloramphenicol acetyltransferase which had been experimentally determined. However, the analysis of 16 homologous protein families belonging to the α/β hydrolase fold showed that functionally rare codons share no common location in respect to the tertiary and secondary structure.ConclusionA systematic analysis of multisequence alignments of homologous protein families can be used to predict rare codons with a potential impact on protein expression. Our analysis showed that most genes contain at least one putative rare codon rich region. Rare codons located near to those regions should be excluded in an approach of improving protein expression by an exchange of rare codons by more frequent codons.


Antimicrobial Agents and Chemotherapy | 2012

Systematic Analysis of Metallo-β-Lactamases Using an Automated Database

Michael Widmann; Jürgen Pleiss; Peter Oelschlaeger

ABSTRACT Metallo-β-lactamases (MBLs) are enzymes that hydrolyze β-lactam antibiotics, resulting in bacterial resistance to these drugs. These proteins have caused concerns due to their facile transference, broad substrate spectra, and the absence of clinically useful inhibitors. To facilitate the classification, nomenclature, and analysis of MBLs, an automated database system was developed, the Metallo-β-Lactamase Engineering Database (MBLED) (http://www.mbled.uni-stuttgart.de). It contains information on MBLs retrieved from the NCBI peptide database while strictly following the nomenclature by Jacoby and Bush (http://www.lahey.org/Studies/) and the generally accepted class B β-lactamase (BBL) standard numbering scheme for MBLs. The database comprises 597 MBL protein sequences and enables systematic analyses of these sequences. A systematic analysis employing the database resulted in the generation of mutation profiles of assigned IMP- and VIM-type MBLs, the identification of five MBL protein entries from the NCBI peptide database that were inconsistent with the Jacoby and Bush nomenclature, and the identification of 15 new IMP candidates and 9 new VIM candidates. Furthermore, the database was used to identify residues with high mutation frequencies and variability (mutation hot spots) that were unexpectedly distant from the active site located in the ββ sandwich: positions 208 and 266 in the IMP family and positions 215 and 258 in the VIM family. We expect that the MBLED will be a valuable tool for systematically cataloguing and analyzing the increasing number of MBLs being reported.


Chemical Communications | 2013

(S)-Selective MenD variants from Escherichia coli provide access to new functionalized chiral α-hydroxy ketones.

Robert Westphal; Simon Waltzer; Ursula Mackfeld; Michael Widmann; Jürgen Pleiss; Maryam Beigi; Michael Müller; Dörte Rother; Martina Pohl

We report the first rationally designed (S)-selective MenD from E. coli for the synthesis of functionalized α-hydroxy ketones. By mutation of two amino acids in the active site stereoselectivity of the (R)-selective EcMenD (ee > 93%) was inverted giving access to (S)-5-hydroxy-4-oxo-5-phenylpentanoate derivatives with stereoselectivities up to 97% ee.


BMC Biochemistry | 2012

A standard numbering scheme for thiamine diphosphate-dependent decarboxylases

Constantin Vogel; Michael Widmann; Martina Pohl; Jürgen Pleiss

BackgroundStandard numbering schemes for families of homologous proteins allow for the unambiguous identification of functionally and structurally relevant residues, to communicate results on mutations, and to systematically analyse sequence-function relationships in protein families. Standard numbering schemes have been successfully implemented for several protein families, including lactamases and antibodies, whereas a numbering scheme for the structural family of thiamine-diphosphate (ThDP) -dependent decarboxylases, a large subfamily of the class of ThDP-dependent enzymes encompassing pyruvate-, benzoylformate-, 2-oxo acid-, indolpyruvate- and phenylpyruvate decarboxylases, benzaldehyde lyase, acetohydroxyacid synthases and 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD) is still missing.Despite a high structural similarity between the members of the ThDP-dependent decarboxylases, their sequences are diverse and make a pairwise sequence comparison of protein family members difficult.ResultsWe developed and validated a standard numbering scheme for the family of ThDP-dependent decarboxylases. A profile hidden Markov model (HMM) was created using a set of representative sequences from the family of ThDP-dependent decarboxylases. The pyruvate decarboxylase from S. cerevisiae (PDB: 2VK8) was chosen as a reference because it is a well characterized enzyme. The crystal structure with the PDB identifier 2VK8 encompasses the structure of the Sc PDC mutant E477Q, the cofactors ThDP and Mg2+ as well as the substrate analogue (2S)-2-hydroxypropanoic acid. The absolute numbering of this reference sequence was transferred to all members of the ThDP-dependent decarboxylase protein family. Subsequently, the numbering scheme was integrated into the already established Thiamine-diphosphate dependent Enzyme Engineering Database (TEED) and was used to systematically analyze functionally and structurally relevant positions in the superfamily of ThDP-dependent decarboxylases.ConclusionsThe numbering scheme serves as a tool for the reliable sequence alignment of ThDP-dependent decarboxylases and the unambiguous identification and communication of corresponding positions. Thus, it is the basis for the systematic and automated analysis of sequence-encoded properties such as structural and functional relevance of amino acid positions, because the analysis of conserved positions, the identification of correlated mutations and the determination of subfamily specific amino acid distributions depend on reliable multisequence alignments and the unambiguous identification of the alignment columns. The method is reliable and robust and can easily be adapted to further protein families.


Chemcatchem | 2013

Tailoring the S‐Selectivity of 2‐Succinyl‐5‐enolpyruvyl‐6‐hydroxy‐3‐cyclohexene‐1‐carboxylate Synthase (MenD) from Escherichia coli

Robert Westphal; Doris Hahn; Ursula Mackfeld; Simon Waltzer; Maryam Beigi; Michael Widmann; Constantin Vogel; Jürgen Pleiss; Michael Müller; Dörte Rother; Martina Pohl

The thiamine diphosphate (ThDP)‐dependent enzyme 2‐succinyl‐5‐enolpyruvyl‐6‐hydroxy‐3‐cyclohexene‐1‐carboxylate synthase from Escherichia coli (EcMenD, E.C. 2.2.1.9) catalyzes the carboligation of α‐ketoglutarate (α‐KG) and various benzaldehyde derivatives with excellent chemo‐ as well as high R‐selectivity (enantiomeric excess (ee) >93 %) to yield chiral α‐hydroxy ketones. Based on the recently developed S‐pocket concept, we engineered S‐selective EcMenD variants by optimizing the steric properties and stabilization of the acceptor substrate in the S‐pocket. Moreover, the moderate S‐selectivity of the EcMenD variant I474A/F475G described recently for the carboligation of α‐KG and benzaldehyde (ee=75 %) could be improved by selective destabilization of the R‐pathway, which resulted in the variant I474A/F475G/R395Y (ee=85 % S). Subsequent investigation of the acceptor substrate range of this new variant revealed high S‐selectivity especially with meta‐substituted benzaldehydes, which gave access to 5‐hydroxy‐4‐oxo‐5‐arylpentanoates with excellent enantioselectivities of up to 99 % ee S. Thus, opening the S‐pocket and simultaneous destabilization of the R‐pathway provides a potential general new strategy to enhance the S‐selectivity of ThDP‐dependent enzymes.


Computational and structural biotechnology journal | 2012

Computational tools for rational protein engineering of aldolases.

Michael Widmann; Jürgen Pleiss; Anne K. Samland

In this mini-review we describe the different strategies for rational protein engineering and summarize the computational tools available. Computational tools can either be used to design focused libraries, to predict sequence-function relationships or for structure-based molecular modelling. This also includes de novo design of enzymes. Examples for protein engineering of aldolases and transaldolases are given in the second part of the mini-review.


Antimicrobial Agents and Chemotherapy | 2016

Network Analysis of Sequence-Function Relationships and Exploration of Sequence Space of TEM β-Lactamases

Catharina Zeil; Michael Widmann; Silvia Fademrecht; Constantin Vogel; Jürgen Pleiss

ABSTRACT The Lactamase Engineering Database (www.LacED.uni-stuttgart.de) was developed to facilitate the classification and analysis of TEM β-lactamases. The current version contains 474 TEM variants. Two hundred fifty-nine variants form a large scale-free network of highly connected point mutants. The network was divided into three subnetworks which were enriched by single phenotypes: one network with predominantly 2be and two networks with 2br phenotypes. Fifteen positions were found to be highly variable, contributing to the majority of the observed variants. Since it is expected that a considerable fraction of the theoretical sequence space is functional, the currently sequenced 474 variants represent only the tip of the iceberg of functional TEM β-lactamase variants which form a huge natural reservoir of highly interconnected variants. Almost 50% of the variants are part of a quartet. Thus, two single mutations that result in functional enzymes can be combined into a functional protein. Most of these quartets consist of the same phenotype, or the mutations are additive with respect to the phenotype. By predicting quartets from triplets, 3,916 unknown variants were constructed. Eighty-seven variants complement multiple quartets and therefore have a high probability of being functional. The construction of a TEM β-lactamase network and subsequent analyses by clustering and quartet prediction are valuable tools to gain new insights into the viable sequence space of TEM β-lactamases and to predict their phenotype. The highly connected sequence space of TEM β-lactamases is ideally suited to network analysis and demonstrates the strengths of network analysis over tree reconstruction methods.

Collaboration


Dive into the Michael Widmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martina Pohl

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Dörte Rother

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Westphal

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Mackfeld

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Demet Sirim

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar

Doris Hahn

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge