Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Wiest is active.

Publication


Featured researches published by Michael Wiest.


Proceedings of SPIE | 2010

GRAVITY: a four-telescope beam combiner instrument for the VLTI

S. Gillessen; F. Eisenhauer; G. Perrin; Wolfgang Brandner; C. Straubmeier; K. Perraut; A. Amorim; M. Schöller; Constanza Araujo-Hauck; H. Bartko; Harald Baumeister; Jean-Philippe Berger; Pedro Carvas; F. Cassaing; F. Chapron; E. Choquet; Y. Clénet; C. Collin; A. Eckart; Pierre Fedou; Sebastian Fischer; Eric Gendron; R. Genzel; Philippe B. Gitton; F. Gonte; A. Gräter; P. Haguenauer; M. Haug; X. Haubois; T. Henning

GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 μas astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.


Proceedings of SPIE | 2010

GRAVITY Spectrometer Metrology laser blocking strategy at OD=12

Constanza Araujo-Hauck; Sebastian Fischer; H. Bartko; S. Gillessen; C. Straubmeier; Michael Wiest; Senol Yazici; F. Eisenhauer; Guy S. Perrin; Wolfgang Brandner; K. Perraut; A. Amorim; A. Eckart

A two stage blocking system is implemented in the GRAVITY science and the fringe tracking spectrometer optical design. The blocking system consists of a dichroic mirror and a long wave band-pass filter with the top level requirements of high transmission of the science light in the K-Band (1.95 - 2.5 μm) region and high blocking power optical density (OD) ≥ 8 for the metrology laser wavelength at 1.908 μm. The laser metrology blocking filters have been identified as one critical optical component in the GRAVITY science and fringe tracker spectrometer design. During the Phase-B study of GRAVITY we procured 3 blocking filter test samples for demonstration and qualification tests. We present the measurements results of an effective blocking of the metrology laser wavelength with a long wave band-pass filter at OD=12.


Proceedings of SPIE | 2010

The GRAVITY spectrometers: optical design and principle of operation

C. Straubmeier; Sebastian Fischer; Constanza Araujo-Hauck; Michael Wiest; Senol Yazici; F. Eisenhauer; G. Perrin; Wolfgang Brandner; K. Perraut; A. Amorim; M. Schöller; A. Eckart

Operating on 6 interferometric baselines, i.e. using all 4 unit telescopes (UTs) of the Very Large Telescope Interferometer (VLTI) simultaneously, the 2nd generation VLTI instrument GRAVITY will deliver narrow-angle astrometry with 10μas accuracy at the infrared K-band. At this angular resolution, GRAVITY will be able to detect the positional shift of the photo-center of a flare at the Galactic Center within its orbital timescale of about 20 minutes, using the observed motion of the flares as dynamical probes of the gravitational field around the supermassive black hole Sgr A*. Within the international GRAVITY consortium, the 1. Physikalische Institut of the University of Cologne is responsible for the development and construction of the two spectrometers of the camera system: one for the science object, and one for the fringe tracking object. In this paper we present the phase-B optical design of the two spectrometers as it got derived from the scientific and technical requirements and as it passed the preliminary design review (PDR) at the European Southern Observatory (ESO) successfully in late 2009.


Proceedings of SPIE | 2010

Signatures of strong gravity with GRAVITY

A. Eckart; M. Zamaninasab; C. Straubmeier; Sebastian Fischer; Constanza Araujo-Hauck; M. García-Marín; Michael Wiest; G. Witzel; R. M. Buchholz; N. Sabha; Koraljka Muzic; F. Eisenhauer; T. Paumard; Senol Yazici; G. Perrin; Wolfgang Brandner; K. Perraut; A. Amorim; M. Schöller

The dynamics of stars and gas undoubtedly shows the existence of a 4 million solar mass black hole at the center of the Milky Way: Sagittarius A* (SgrA*). Violent flare emission allows us to probe the immediate environment of the central mass. Near-infrared polarimetry now shows signatures of strong gravity that are statistically significant against randomly polarized red noise. Using these signatures we can derive spin and inclination information of SgrA*. A combined synchrotron self Compton (SSC) and adiabatic expansion model with source components peaking in the sub-mm domain can fully account for the observed flare flux densities and the time delays towards the (sub-)mm flares that have been reported in some cases. We discuss the expected centroid paths of the NIR images and summarize how the geometrical structure of the emitting region (i.e. spot shape, presence of a torus or spiral-arm pattern etc.) affects this centroid tracks. While most of the mentioned geometries are able to fit the observed fluxes, future NIR interferometry with GRAVITY at the VLT will break some of the degeneracies between different emission models. In this contribution we summarize several GRAVITY science cases for SgrA*. Our simulations propose that focusing GRAVITY observations on the polarimetry mode could reveal a clear centroid track of the spot(s). A non-detection of centroid shifts cannot rule out the multi-component model or spiral arms scenarios. However, a clear wander between alternating centroid positions during the flares will prove the idea of bright long-lived spots occasionally orbiting the central black hole.


Astronomy and Astrophysics | 2018

Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

R. Abuter; A. Amorim; Narsireddy Anugu; M. Bauböck; M. Benisty; J. Berger; N. Blind; Henri Bonnet; W. Brandner; A. Buron; C. Collin; F. Chapron; Y. Clénet; V. Coudé du Foresto; P. T. de Zeeuw; Casey P. Deen; F. Delplancke-Ströbele; Roderick Dembet; Jason Dexter; Gilles Duvert; A. Eckart; F. Eisenhauer; Gert Finger; N. M. Förster Schreiber; Pierre Fedou; Paulo Garcia; R. J. García López; F. Gao; Eric Gendron; R. Genzel

This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this record


Astronomy and Astrophysics | 2017

Accretion-ejection morphology of the microquasar SS 433 resolved at sub-au scale

P. O. Petrucci; I. Waisberg; J.-B. Le Bouquin; Jason Dexter; G. Dubus; K. Perraut; P. Kervella; Roberto Abuter; A. Amorim; N. Anugu; Jean-Philippe Berger; N. Blind; Henri Bonnet; Wolfgang Brandner; A. Buron; E. Choquet; Yann Clenet; W. J. de Wit; Casey P. Deen; A. Eckart; F. Eisenhauer; Gert Finger; Paulo Garcia; R. Garcia Lopez; Eric Gendron; R. Genzel; S. Gillessen; F. Gonte; X. Haubois; M. Haug

We present the first optical observation of the microquasar SS 433 at sub-milliarcsecond (mas) scale obtained with the GRAVITY instrument on the Very Large Telescope interferometer (VLTI). The 3.5-h exposure reveals a rich K-band spectrum dominated by hydrogen Brγand He i lines, as well as (red-shifted)emission lines coming from the jets. The K-band-continuum-emitting region is dominated by a marginally resolved point source (<1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The jet line positions agree well with the ones expected from the jet kinematic model, an interpretation also supported by the consistent sign (i.e., negative/positive for the receding/approaching jet component) of the phase shifts observed in the lines. The significant visibility drop across the jet lines, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by less than 0.5 mas from the continuum source and resolved in the direction of propagation, with a typical size of 2 mas. The jet position angle of ~80° is consistent with the expected one at the observation date. Jet emission so close to the central binary system would suggest that line locking, if relevant to explain the amplitude and stability of the 0.26c jet velocity, operates on elements heavier than hydrogen. The Brγprofile is broad and double peaked. It is better resolved than the continuum and the change of the phase signal sign across the line on all baselines suggests an East-West-oriented geometry similar to the jet direction and supporting a (polar) disk wind origin. Key words: stars: individual: SS 433 / ISM: jets and outflows / techniques: interferometric / infrared: stars⋆ Based on observations made with VLTI/Gravity instrument.⋆⋆ GRAVITY is developed in a collaboration by the Max Planck Institute for extraterrestrial Physics, LESIA of Paris Observatory/CNRS/UPMC/Univ. Paris Diderot and IPAG of Universite Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the Centro Multidisciplinar de Astrofisica Lisbon and Porto, and the European Southern Observatory.


Proceedings of SPIE | 2014

The GRAVITY spectrometers: optical design and first light

C. Straubmeier; Senol Yazici; Michael Wiest; Imke Wank; Sebastian Fischer; F. Eisenhauer; G. Perrin; K. Perraut; Wolfgang Brandner; A. Amorim; M. Schöller; A. Eckart

Operating on 6 interferometric baselines, i.e. using all 4 unit telescopes (UTs) of the Very Large Telescope Interferometer (VLTI) simultaneously, the 2nd generation VLTI instrument GRAVITY will deliver narrow-angle astrometry with 10μas accuracy at the infrared K-band. At this angular resolution, GRAVITY will e.g. be able to detect the positional shift of the photo-center of a flare at the Galactic Center within its orbital timescale of about 20 minutes, using the observed motion of the flares as dynamical probes of the gravitational field around the supermassive black hole Sgr A*. Within the international GRAVITY consortium, the 1. Physikalische Institut of the University of Cologne is responsible for the development and construction of the two spectrometers of the camera system: one for the science object, and one for the fringe tracking object, both being operated in cryo-vacuum conditions. In this contribution we describe the basic functionality of the two units and present the final optical design of the two spectrometers as it got realised successfully until end of 2013 with minor changes to the Final Design Review (FDR) of October 2011. In addition we present some of the first light images of the two spectrometers, taken at the laboratory of the Cologne institute between Dec. 2012 and Oct. 2013 respectively. By the end of 2013 both spectrometers got transferred to the PI institute of GRAVITY, the Max-Planck-Institute for Extraterrestrial Physics, where at the time of writing they are undergoing system-level testing in combination with the other sub-systems of GRAVITY.


The Astrophysical Journal | 2017

Submilliarcsecond optical interferometry of the high-mass X-ray binary BP Cru with VLTI/GRAVITY

I. Waisberg; Jason Dexter; O. Pfuhl; R. Abuter; A. Amorim; Narsireddy Anugu; J. Berger; N. Blind; Henri Bonnet; W. Brandner; A. Buron; Y. Clénet; W. J. de Wit; Casey P. Deen; F. Delplancke-Ströbele; Roderick Dembet; Gilles Duvert; A. Eckart; F. Eisenhauer; Pierre Fedou; Gert Finger; Paulo Garcia; R. J. García López; Eric Gendron; R. Genzel; S. Gillessen; X. Haubois; M. Haug; F. Haussmann; Th. Henning

This is the final version. Available from American Astronomical Society via the DOI in this record


Proceedings of SPIE | 2012

Beating the confusion limit: the necessity of high angular resolution for probing the physics of Sagittarius A* and its environment: opportunities for LINC-NIRVANA (LBT), GRAVITY (VLTI) and and METIS (E-ELT)

A. Eckart; N. Sabha; G. Witzel; C. Straubmeier; B. Shahzamanian; M. Valencia-S.; M. García-Marín; M. Horrobin; Lydia Moser; Jens Zuther; Sebastian Fischer; C. Rauch; Steffen Rost; Christof Iserlohe; S. Yazici; Semir Smajic; Michael Wiest; Constanza Araujo-Hauck; Imke Wank

The super-massive 4 million solar mass black hole (SMBH) SgrA* shows variable emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flux density excursions are dominated by a single state power law, with the low states of SgrA* are limited by confusion through the unresolved stellar background. We show that for 8-10m class telescopes blending effects along the line of sight will result in artificial compact star-like objects of 0.5-1 mJy that last for about 3-4 years. We discuss how the imaging capabilities of GRAVITY at the VLTI, LINC-NIRVANA at the LBT and METIS at the E-ELT will contribute to the investigation of the low variability states of SgrA*.


Proceedings of SPIE | 2012

The GRAVITY spectrometers: optical design

C. Straubmeier; Sebastian Fischer; Constanza Araujo-Hauck; Michael Wiest; Senol Yazici; Imke Wank; F. Eisenhauer; G. Perrin; Wolfgang Brandner; K. Perraut; A. Amorim; M. Schöller; A. Eckart

Operating on 6 interferometric baselines, i.e. using all 4 unit telescopes (UTs) of the Very Large Telescope Interferometer (VLTI) simultaneously, the 2nd generation VLTI instrument GRAVITY will deliver narrow-angle astrometry with 10μas accuracy at the infrared K-band. At this angular resolution, GRAVITY will be able to detect the positional shift of the photo-center of a flare at the Galactic Center within its orbital timescale of about 20 minutes, using the observed motion of the flares as dynamical probes of the gravitational field around the supermassive black hole Sgr A*. Within the international GRAVITY consortium, the 1. Physikalische Institut of the University of Cologne is responsible for the development and construction of the two spectrometers of the camera system: one for the science object, and one for the fringe tracking object, both being operated at cryo-vacuum. In this paper we present the phase-C final optical design of the two spectrometers as it got derived from the scientific and technical requirements and as it was presented and reviewed successfully at the Final Design Review (FDR) at the European Southern Observatory (ESO) in October 2011.

Collaboration


Dive into the Michael Wiest's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Perraut

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Schöller

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge