Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Wilczek is active.

Publication


Featured researches published by Michael Wilczek.


Journal of Fluid Mechanics | 2011

On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity

Michael Wilczek; Anton Daitche; R. Friedrich

We investigate the single-point probability density function of the velocity in threedimensional stationary and decaying homogeneous isotropic turbulence. To this end, we apply the statistical framework of the Lundgren–Monin–Novikov hierarchy combined with conditional averaging, identifying the quantities that determine the shape of the probability density function. In this framework, the conditional averages of the rate of energy dissipation, the velocity diffusion and the pressure gradient with respect to velocity play a key role. Direct numerical simulations of the Navier–Stokes equation are used to complement the theoretical results and assess deviations from Gaussianity.


Journal of Fluid Mechanics | 2014

Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow

Richard Johannes Antonius Maria Stevens; Michael Wilczek; Charles Meneveau

The logarithmic law for the mean velocity in turbulent boundary layers has long provided a valuable and robust reference for comparison with theories, models and large-eddy simulations (LES) of wall-bounded turbulence. More recently, analysis of high-Reynolds-number experimental boundary-layer data has shown that also the variance and higher-order moments of the streamwise velocity fluctuations u ′+ display logarithmic laws. Such experimental observations motivate the question whether LES can accurately reproduce the variance and the higher-order moments, in particular their logarithmic dependency on distance to the wall. In this study we perform LES of very high-Reynolds-number wall-modelled channel flow and focus on profiles of variance and higher-order moments of the streamwise velocity fluctuations. In agreement with the experimental data, we observe an approximately logarithmic law for the variance in the LES, with a ‘Townsend–Perry’ constant of A 1 ≈1.25 . The LES also yields approximate logarithmic laws for the higher-order moments of the streamwise velocity. Good agreement is found between A p , the generalized ‘Townsend–Perry’ constants for moments of order 2p , from experiments and simulations. Both are indicative of sub-Gaussian behaviour of the streamwise velocity fluctuations. The near-wall behaviour of the variance, the ranges of validity of the logarithmic law and in particular possible dependencies on characteristic length scales such as the roughness length z 0 , the LES grid scale Δ , and subgrid scale mixing length C s Δ are examined. We also present LES results on moments of spanwise and wall-normal fluctuations of velocity


Journal of Fluid Mechanics | 2015

Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models

Michael Wilczek; Richard Johannes Antonius Maria Stevens; Charles Meneveau

Motivated by the need to characterize the spatio-temporal structure of turbulence in wall-bounded flows, we study wavenumber–frequency spectra of the streamwise velocity component based on large-eddy simulation (LES) data. The LES data are used to measure spectra as a function of the two wall-parallel wavenumbers and the frequency in the equilibrium (logarithmic) layer. We then reformulate one of the simplest models that is able to reproduce the observations: the random sweeping model with a Gaussian large-scale fluctuating velocity and with additional mean flow. Comparison with LES data shows that the model captures the observed temporal decorrelation, which is related to the Doppler broadening of frequencies. We furthermore introduce a parameterization for the entire wavenumber–frequency spectrum E11(k1,k2,ω;z), where k1, k2 are the streamwise and spanwise wavenumbers, ω is the frequency and z is the distance to the wall. The results are found to be in good agreement with LES data.


Journal of Fluid Mechanics | 2014

Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields

Michael Wilczek; Charles Meneveau

Understanding the non-local pressure contributions and viscous effects on the small-scale statistics remains one of the central challenges in the study of homogeneous isotropic turbulence. Here we address this issue by studying the impact of the pressure Hessian as well as viscous diffusion on the statistics of the velocity gradient tensor in the framework of an exact statistical evolution equation. This evolution equation shares similarities with earlier phenomenological models for the Lagrangian velocity gradient tensor evolution, yet constitutes the starting point for a systematic study of the unclosed pressure Hessian and viscous diffusion terms. Based on the assumption of incompressible Gaussian velocity fields, closed expressions are obtained as the results of an evaluation of the characteristic functionals. The benefits and shortcomings of this Gaussian closure are discussed, and a generalization is proposed based on results from direct numerical simulations. This enhanced Gaussian closure yields, for example, insights on how the pressure Hessian prevents the finite-time singularity induced by the local self-amplification and how its interaction with viscous effects leads to the characteristic strain skewness phenomenon.


Physical Review Letters | 2013

Dissipation layers in Rayleigh-Bénard convection: a unifying view.

K. Petschel; Stephan Stellmach; Michael Wilczek; Johannes Lülff; Ulrich Hansen

Boundary layers play an important role in controlling convective heat transfer. Their nature varies considerably between different application areas characterized by different boundary conditions, which hampers a uniform treatment. Here, we argue that, independent of boundary conditions, systematic dissipation measurements in Rayleigh-Bénard convection capture the relevant near-wall structures. By means of direct numerical simulations with varying Prandtl numbers, we demonstrate that such dissipation layers share central characteristics with classical boundary layers, but, in contrast to the latter, can be extended naturally to arbitrary boundary conditions. We validate our approach by explaining differences in scaling behavior observed for no-slip and stress-free boundaries, thus paving the way to an extension of scaling theories developed for laboratory convection to a broad class of natural systems.


Physical Review Letters | 2013

Nonuniversal Power-law Spectra in Turbulent Systems

Vasil Bratanov; F. Jenko; D. R. Hatch; Michael Wilczek

Turbulence is generally associated with universal power-law spectra in scale ranges without significant drive or damping. Although many examples of turbulent systems do not exhibit such an inertial range, power-law spectra may still be observed. As a simple model for such situations, a modified version of the Kuramoto-Sivashinsky equation is studied. By means of semianalytical and numerical studies, one finds power laws with nonuniversal exponents in the spectral range for which the ratio of nonlinear and linear time scales is (roughly) scale independent.


Physica D: Nonlinear Phenomena | 2008

Lagrangian investigation of two-dimensional decaying turbulence

Michael Wilczek; Oliver Kamps; R. Friedrich

We present a numerical investigation of two-dimensional decaying turbulence in the Lagrangian framework. Focusing on single particle statistics, we investigate Lagrangian trajectories in a freely evolving turbulent velocity field. The dynamical evolution of the tracer particles is strongly dominated by the emergence and evolution of coherent structures. For a statistical analysis we focus on the Lagrangian acceleration as a central quantity. For more geometrical aspects we investigate the curvature along the trajectories. We find strong signatures for the self-similar universal behavior.


Physics of Fluids | 2012

Conditional vorticity budget of coherent and incoherent flow contributions in fully developed homogeneous isotropic turbulence

Michael Wilczek; Benjamin Kadoch; Kai Schneider; Rudolf Friedrich; Marie Farge

We investigate the conditional vorticity budget of fully developed three-dimensional homogeneous isotropic turbulence with respect to coherent and incoherent flow contributions. The coherent vorticity extraction based on orthogonal wavelets allows to decompose the vorticity field into coherent and incoherent contributions, of which the latter are noise-like. The impact of the vortex structures observed in fully developed turbulence on statistical balance equations is quantified considering the conditional vorticity budget. The connection between the basic structures present in the flow and their statistical implications is thereby assessed. The results are compared to those obtained for large- and small-scale contributions using a Fourier decomposition, which reveals pronounced differences.


New Journal of Physics | 2011

Temperature statistics in turbulent Rayleigh–Bénard convection

Johannes Lülff; Michael Wilczek; R. Friedrich

Rayleigh–Benard (RB) convection in the turbulent regime is studied using statistical methods. Exact evolution equations for the probability density function of temperature and velocity are derived from first principles within the framework of the Lundgren–Monin–Novikov hierarchy known from homogeneous isotropic turbulence. The unclosed terms arising in the form of conditional averages are estimated from direct numerical simulations. Focusing on the statistics of temperature, the theoretical framework allows us to interpret the statistical results in an illustrative manner, giving deeper insights into the connection between dynamics and statistics of RB convection. The results are discussed in terms of typical flow features and the relation to the heat transfer.


EPL | 2011

Theory for the single-point velocity statistics of fully developed turbulence

Michael Wilczek; Anton Daitche; R. Friedrich

We investigate the single-point velocity probability density function (PDF) in three-dimensional fully developed homogeneous isotropic turbulence within the framework of PDF equations focussing on deviations from Gaussianity. A joint analytical and numerical analysis shows that these deviations may be quantified studying correlations of dynamical quantities like pressure gradient, external forcing and energy dissipation with the velocity. A stationary solution for the PDF equation in terms of these quantities is presented, and the theory is validated with the help of direct numerical simulations indicating sub-Gaussian tails of the PDF.

Collaboration


Dive into the Michael Wilczek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Narita

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge