Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Wilschanski is active.

Publication


Featured researches published by Michael Wilschanski.


Nature Genetics | 1996

Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor

Richard Rozmahel; Michael Wilschanski; Angabin Matin; Suzanne Plyte; Mary Oliver; Wojtek Auerbach; Aideen M. Moore; Janet F. Forstner; Peter R. Durie; Joseph Nadeau; Christine E. Bear; Lap-Chee Tsui

Mice that have been made deficient for the cystic fibrosis transmembrane conductance regulator (Cftr) usually die of intestinal obstruction. We have created Cftr-deficient mice and demonstrate prolonged survival among backcross and intercross progeny with different inbred strains, suggesting that modulation of disease severity is genetically determined. A genome scan showed that the major modifier locus maps near the centromere of mouse chromosome 7. Electrophysiological studies on mice with prolonged survival show that the partial rectification of Cl− and Na+ ion transport abnormalities can be explained in part by up-regulation of a calcium-activated Cl− conductance. Identification of modifier genes in our Cftr m1HSC/Cftr m1HSC mice should provide important insight into the heterogeneous disease presentation observed among CF patients.


The Lancet | 2008

Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial

Eitan Kerem; Samit Hirawat; S. Armoni; Yasmin Yaakov; David Shoseyov; Michael Cohen; Malka Nissim-Rafinia; H. Blau; Joseph Rivlin; Micha Aviram; Gary L. Elfring; Valerie J. Northcutt; Langdon L. Miller; Batsheva Kerem; Michael Wilschanski

BACKGROUND In about 10% of patients worldwide and more than 50% of patients in Israel, cystic fibrosis results from nonsense mutations (premature stop codons) in the messenger RNA (mRNA) for the cystic fibrosis transmembrane conductance regulator (CFTR). PTC124 is an orally bioavailable small molecule that is designed to induce ribosomes to selectively read through premature stop codons during mRNA translation, to produce functional CFTR. METHODS This phase II prospective trial recruited adults with cystic fibrosis who had at least one nonsense mutation in the CFTR gene. Patients were assessed in two 28-day cycles. During the first cycle, patients received PTC124 at 16 mg/kg per day in three doses every day for 14 days, followed by 14 days without treatment; in the second cycle, patients received 40 mg/kg of PTC124 in three doses every day for 14 days, followed by 14 days without treatment. The primary outcome had three components: change in CFTR-mediated total chloride transport; proportion of patients who responded to treatment; and normalisation of chloride transport, as assessed by transepithelial nasal potential difference (PD) at baseline, at the end of each 14-day treatment course, and after 14 days without treatment. The trial was registered with who.int/ictrp, and with clinicaltrials.gov, number NCT00237380. FINDINGS Transepithelial nasal PD was evaluated in 23 patients in the first cycle and in 21 patients in the second cycle. Mean total chloride transport increased in the first treatment phase, with a change of -7.1 (SD 7.0) mV (p<0.0001), and in the second, with a change of -3.7 (SD 7.3) mV (p=0.032). We recorded a response in total chloride transport (defined as a change in nasal PD of -5 mV or more) in 16 of the 23 patients in the first cycles treatment phase (p<0.0001) and in eight of the 21 patients in the second cycle (p<0.0001). Total chloride transport entered the normal range for 13 of 23 patients in the first cycles treatment phase (p=0.0003) and for nine of 21 in the second cycle (p=0.02). Two patients given PTC124 had constipation without intestinal obstruction, and four had mild dysuria. No drug-related serious adverse events were recorded. INTERPRETATION In patients with cystic fibrosis who have a premature stop codon in the CFTR gene, oral administration of PTC124 to suppress nonsense mutations reduces the epithelial electrophysiological abnormalities caused by CFTR dysfunction.


Thorax | 2006

Cystic fibrosis: terminology and diagnostic algorithms

K De Boeck; Michael Wilschanski; Carlo Castellani; C Taylor; Harry Cuppens; John A. Dodge; M. Sinaasappel

There is great heterogeneity in the clinical manifestations of cystic fibrosis (CF). Some patients may have all the classical manifestations of CF from infancy and have a relatively poor prognosis, while others have much milder or even atypical disease manifestations and still carry mutations on each of the CFTR genes. It is important to distinguish between these categories of patients. The European Diagnostic Working Group proposes the following terminology. Patients are diagnosed with classic or typical CF if they have one or more phenotypic characteristics and a sweat chloride concentration of >60 mmol/l. The vast majority of CF patients fall into this category. Usually one established mutation causing CF can be identified on each CFTR gene. Patients with classic CF can have exocrine pancreatic insufficiency or pancreatic sufficiency. The disease can have a severe course with rapid progression of symptoms or a milder course with very little deterioration over time. Patients with non-classic or atypical CF have a CF phenotype in at least one organ system and a normal (<30 mmol/l) or borderline (30–60 mmol/l) sweat chloride level. In these patients confirmation of the diagnosis of CF requires detection of one disease causing mutation on each CFTR gene or direct quantification of CFTR dysfunction by nasal potential difference measurement. Non-classic CF includes patients with multiorgan or single organ involvement. Most of these patients have exocrine pancreatic sufficiency and milder lung disease. Algorithms for a structured diagnostic process are proposed.


The Journal of Pediatrics | 1995

Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations

Michael Wilschanski; Julian Zielenski; Danuta Markiewicz; Lap-Chee Tsui; Mary Corey; Henry Levison; Peter R. Durie

OBJECTIVE To compare differences in epithelial chloride conductance according to class of mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. METHODS We evaluated the relationship between the functional classes of CFTR mutations and chloride conductance using the first diagnostic sweat chloride concentration in a large cystic fibrosis (CF) population. RESULTS There was no difference in sweat chloride value value between classes of CFTR mutations that produce no protein (class I), fail to reach the apical membrane because of defective processing (class II), or produce protein that fails to respond to cyclic adenosine monophosphate (class III). Those mutations that produce a cyclic adenosine monophosphate-responsive channel with reduced conductance (class IV) were associated with a significantly lower, intermediate sweat chloride value. However, patients with the mutations that cause reduced synthesis or partially defective processing of normal CFTR (class V) had sweat chloride concentrations similar to those in classes I to III. CONCLUSION Studies of differences in chloride conductance between functional classes of CFTR mutations provide insight into phenotypic expression of the disease.


Journal of Clinical Investigation | 2007

Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin.

Liat Linde; Stephanie Boelz; Malka Nissim-Rafinia; Yifat S. Oren; Michael Wilschanski; Yasmin Yaacov; Dov Virgilis; Gabriele Neu-Yilik; Andreas E. Kulozik; Eitan Kerem; Batsheva Kerem

Aminoglycosides can readthrough premature termination codons (PTCs), permitting translation of full-length proteins. Previously we have found variable efficiency of readthrough in response to the aminoglycoside gentamicin among cystic fibrosis (CF) patients, all carrying the W1282X nonsense mutation. Here we demonstrate that there are patients in whom the level of CF transmembrane conductance regulator (CFTR) nonsense transcripts is markedly reduced, while in others it is significantly higher. Response to gentamicin was found only in patients with the higher level. We further investigated the possibility that the nonsense-mediated mRNA decay (NMD) might vary among cells and hence governs the level of nonsense transcripts available for readthrough. Our results demonstrate differences in NMD efficiency of CFTR transcripts carrying the W1282X mutation among different epithelial cell lines derived from the same tissue. Variability was also found for 5 physiologic NMD substrates, RPL3, SC35 1.6 kb, SC35 1.7 kb, ASNS, and CARS. Importantly, our results demonstrate the existence of cells in which NMD of all transcripts was efficient and others in which the NMD was less efficient. Downregulation of NMD in cells carrying the W1282X mutation increased the level of CFTR nonsense transcripts and enhanced the CFTR chloride channel activity in response to gentamicin. Together our results suggest that the efficiency of NMD might vary and hence have an important role in governing the response to treatments aiming to promote readthrough of PTCs in many genetic diseases.


The Lancet Respiratory Medicine | 2014

Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial

Eitan Kerem; Michael W. Konstan; Kris De Boeck; Frank J. Accurso; Isabelle Sermet-Gaudelus; Michael Wilschanski; J. Stuart Elborn; Paola Melotti; I. Bronsveld; Isabelle Fajac; Anne Malfroot; Daniel B. Rosenbluth; Patricia A Walker; Susanna A. McColley; Christiane Knoop; Serena Quattrucci; Ernst Rietschel; Pamela L. Zeitlin; Jay Barth; Gary L. Elfring; Ellen Welch; Arthur Branstrom; Robert Spiegel; Stuart W. Peltz; Temitayo Ajayi; Steven M. Rowe

BACKGROUND Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis. METHODS This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged ≥ 6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] ≥ 40% and ≤ 90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205. FINDINGS Between Sept 8, 2009, and Nov 30, 2010, 238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2.5% vs -5.5%; difference 3.0% [95% CI -0.8 to 6.3]; p=0.12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0.77 [95% CI 0.57-1.05]; p=0.0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference (95% CI 1.5-10.1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0.7% [-4.0 to 2.1] vs -6.4% [-9.8 to -3.7]; nominal p=0.0082), and fewer pulmonary exacerbations in the ataluern group (1.42 events [0.9-1.9] vs 2.18 events [1.6-2.7]; rate ratio 0.60 [0.42-0.86]; nominal p=0.0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. INTERPRETATION Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taking chronic inhaled tobramycin. FUNDING PTC Therapeutics, Cystic Fibrosis Foundation, US Food and Drug Administrations Office of Orphan Products Development, and the National Institutes of Health.


JAMA | 2009

Genetic Modifiers of Liver Disease in Cystic Fibrosis

Jaclyn R. Bartlett; Kenneth J. Friedman; Simon C. Ling; Rhonda G. Pace; Scott C. Bell; Billy Bourke; Giuseppe Castaldo; Carlo Castellani; Marco Cipolli; Carla Colombo; John L. Colombo; Dominique Debray; Adriana Fernandez; Florence Lacaille; Milan Macek; Marion Rowland; F. Salvatore; Christopher J. Taylor; Claire Wainwright; Michael Wilschanski; D. Zemkova; William B. Hannah; M. James Phillips; Mary Corey; Julian Zielenski; Ruslan Dorfman; Yunfei Wang; Fei Zou; Lawrence M. Silverman; Mitchell L. Drumm

CONTEXT A subset (approximately 3%-5%) of patients with cystic fibrosis (CF) develops severe liver disease with portal hypertension. OBJECTIVE To assess whether any of 9 polymorphisms in 5 candidate genes (alpha(1)-antitrypsin or alpha(1)-antiprotease [SERPINA1], angiotensin-converting enzyme [ACE], glutathione S-transferase [GSTP1], mannose-binding lectin 2 [MBL2], and transforming growth factor beta1 [TGFB1]) are associated with severe liver disease in patients with CF. DESIGN, SETTING, AND PARTICIPANTS Two-stage case-control study enrolling patients with CF and severe liver disease with portal hypertension (CFLD) from 63 CF centers in the United States as well as 32 in Canada and 18 outside of North America, with the University of North Carolina at Chapel Hill as the coordinating site. In the initial study, 124 patients with CFLD (enrolled January 1999-December 2004) and 843 control patients without CFLD were studied by genotyping 9 polymorphisms in 5 genes previously studied as modifiers of liver disease in CF. In the second stage, the SERPINA1 Z allele and TGFB1 codon 10 genotype were tested in an additional 136 patients with CFLD (enrolled January 2005-February 2007) and 1088 with no CFLD. MAIN OUTCOME MEASURES Differences in distribution of genotypes in patients with CFLD vs patients without CFLD. RESULTS The initial study showed CFLD to be associated with the SERPINA1 Z allele (odds ratio [OR], 4.72; 95% confidence interval [CI], 2.31-9.61; P = 3.3 x 10(-6)) and with TGFB1 codon 10 CC genotype (OR, 1.53; 95% CI, 1.16-2.03; P = 2.8 x 10(-3)). In the replication study, CFLD was associated with the SERPINA1 Z allele (OR, 3.42; 95% CI, 1.54-7.59; P = 1.4 x 10(-3)) but not with TGFB1 codon 10. A combined analysis of the initial and replication studies by logistic regression showed CFLD to be associated with SERPINA1 Z allele (OR, 5.04; 95% CI, 2.88-8.83; P = 1.5 x 10(-8)). CONCLUSIONS The SERPINA1 Z allele is a risk factor for liver disease in CF. Patients who carry the Z allele are at greater risk (OR, approximately 5) of developing severe liver disease with portal hypertension.


European Respiratory Journal | 2011

Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis

Michael Wilschanski; L.L. Miller; David Shoseyov; Hannah Blau; Joseph Rivlin; Michael Aviram; M. Cohen; S. Armoni; Yasmin Yaakov; T. Pugatch; Malena Cohen-Cymberknoh; N.L. Miller; A. Reha; V.J. Northcutt; S. Hirawat; K. Donnelly; G.L. Elfring; T. Ajayi; E. Kerem

In a subset of patients with cystic fibrosis (CF), nonsense mutations (premature stop codons) disrupt production of full-length, functional CF transmembrane conductance regulator (CFTR). Ataluren (PTC124) allows ribosomal readthrough of premature stop codons in mRNA. We evaluated drug activity and safety in patients with nonsense mutation CF who took ataluren three times daily (morning, midday and evening) for 12 weeks at either a lower dose (4, 4 and 8 mg·kg−1) or higher dose (10, 10 and 20 mg·kg−1). The study enrolled 19 patients (10 males and nine females aged 19–57 yrs; dose: lower 12, higher seven) with a classic CF phenotype, at least one CFTR nonsense mutation allele, and an abnormal nasal total chloride transport. Both ataluren doses were similarly active, improving total chloride transport with a combined mean change of -5.4 mV (p<0.001), and on-treatment responses (at least -5 mV improvement) and hyperpolarisations (values more electrically negative than -5 mV) in 61% (p<0.001) and 56% (p = 0.002) of patients. CFTR function was greater with time and was accompanied by trends toward improvements in pulmonary function and CF-related coughing. Adverse clinical and laboratory findings were uncommon and usually mild. Chronic ataluren administration produced time-dependent improvements in CFTR activity and clinical parameters with generally good tolerability.


Journal of Pediatric Gastroenterology and Nutrition | 2014

Management guidelines of eosinophilic esophagitis in childhood

Alexandra Papadopoulou; S. Koletzko; Robert Heuschkel; Jorge Amil Dias; Katrina J. Allen; Simon Murch; Sonny K. F. Chong; Frédéric Gottrand; Steffen Husby; Paolo Lionetti; Maria Luisa Mearin; Frank M. Ruemmele; Michela G. Schäppi; A. Staiano; Michael Wilschanski; Yvan Vandenplas

Objectives: Eosinophilic esophagitis (EoE) represents a chronic, immune/antigen-mediated esophageal disease characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation. With few exceptions, 15 eosinophils per high-power field (peak value) in ≥1 biopsy specimens are considered a minimum threshold for a diagnosis of EoE. The disease is restricted to the esophagus, and other causes of esophageal eosinophilia should be excluded, specifically proton pump inhibitor–responsive esophageal eosinophilia. This position paper aims at providing practical guidelines for the management of children and adolescents with EoE. Methods: Relevant literature from searches of PubMed, CINAHL, and recent guidelines was reviewed. In the absence of an evidence base, recommendations reflect the expert opinion of the authors. Final consensus was obtained during 3 face-to-face meetings of the Gastroenterology Committee and 1 teleconference. Results: The cornerstone of treatment is an elimination diet (targeted or empiric elimination diet, amino acid–based formula) and/or swallowed, topical corticosteroids. Systemic corticosteroids are reserved for severe symptoms requiring rapid relief or where other treatments have failed. Esophageal dilatation is an option in children with EoE who have esophageal stenosis unresponsive to drug therapy. Maintenance treatment may be required in case of frequent relapse, although an optimal regimen still needs to be determined. Conclusions: EoE is a chronic, relapsing inflammatory disease with largely unquantified long-term consequences. Investigations and treatment are tailored to the individual and must not create more morbidity for the patient and family than the disease itself. Better maintenance treatment as well as biomarkers for assessing treatment response and predicting long-term complications is urgently needed.


Journal of Pediatric Gastroenterology and Nutrition | 2012

Definitions of pediatric pancreatitis and survey of present clinical practices.

Veronique D. Morinville; Sohail Z. Husain; Harrison X. Bai; Bradley A. Barth; Rabea Alhosh; Peter R. Durie; Steven D. Freedman; Ryan Himes; Mark E. Lowe; John F. Pohl; Steven L. Werlin; Michael Wilschanski; Aliye Uc

Objectives: There is limited literature on acute pancreatitis (AP), acute recurrent pancreatitis (ARP), and chronic pancreatitis (CP) in children. The International Study Group of Pediatric Pancreatitis: In Search for a Cure (INSPPIRE) consortium was formed to standardize definitions, develop diagnostic algorithms, investigate disease pathophysiology, and design prospective multicenter studies in pediatric pancreatitis. Methods: Subcommittees were formed to delineate definitions of pancreatitis, and a survey was conducted to analyze present practice. Results: AP was defined as requiring 2 of the following: abdominal pain compatible with AP, serum amylase and/or lipase values ≥3 times upper limits of normal, and imaging findings of AP. ARP was defined as ≥2 distinct episodes of AP with intervening return to baseline. CP was diagnosed in the presence of typical abdominal pain plus characteristic imaging findings, or exocrine insufficiency plus imaging findings, or endocrine insufficiency plus imaging findings. We found that children with pancreatitis were primarily managed by pediatric gastroenterologists. Unless the etiology was known, initial investigations included serum liver enzymes, triglycerides, calcium, and abdominal ultrasound. Further investigations (usually for ARP and CP) included magnetic resonance or other imaging, sweat chloride, and genetic testing. Respondents’ future goals for INSPPIRE included determining natural history of pancreatitis, developing algorithms to evaluate and manage pancreatitis, and validating diagnostic criteria. Conclusions: INSPPIRE represents the first initiative to create a multicenter approach to systematically characterize pancreatitis in children. Future aims include creation of patient database and biologic sample repository.

Collaboration


Dive into the Michael Wilschanski's collaboration.

Top Co-Authors

Avatar

Eitan Kerem

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Steven L. Werlin

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven D. Freedman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley A. Barth

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mark E. Lowe

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge