Michael Wulff
European Synchrotron Radiation Facility
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Wulff.
Science | 1996
Vukica Šrajer; Tsu Yi Teng; Thomas Ursby; Claude Pradervand; Zhong Ren; Shin-ichi Adachi; Wilfried Schildkamp; Dominique Bourgeois; Michael Wulff; Keith Moffat
The biological activity of macromolecules is accompanied by rapid structural changes. The photosensitivity of the carbon monoxide complex of myoglobin was used at the European Synchrotron Radiation Facility to obtain pulsed, Laue x-ray diffraction data with nanosecond time resolution during the process of heme and protein relaxation after carbon monoxide photodissociation and during rebinding. These time-resolved experiments reveal the structures of myoglobin photoproducts, provide a structural foundation to spectroscopic results and molecular dynamics calculations, and demonstrate that time-resolved macromolecular crystallography can elucidate the structural bases of biochemical mechanisms on the nanosecond time scale.
Nature Methods | 2008
Marco Cammarata; Matteo Levantino; Friedrich Schotte; Philip A. Anfinrud; Friederike Ewald; Jungkweon Choi; Antonio Cupane; Michael Wulff; Hyotcherl Ihee
We demonstrate tracking of protein structural changes with time-resolved wide-angle X-ray scattering (TR-WAXS) with nanosecond time resolution. We investigated the tertiary and quaternary conformational changes of human hemoglobin under nearly physiological conditions triggered by laser-induced ligand photolysis. We also report data on optically induced tertiary relaxations of myoglobin and refolding of cytochrome c to illustrate the wide applicability of the technique. By providing insights into the structural dynamics of proteins functioning in their natural environment, TR-WAXS complements and extends results obtained with time-resolved optical spectroscopy and X-ray crystallography.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Friedrich Schotte; Hyun Sun Cho; Ville R. I. Kaila; Hironari Kamikubo; Naranbaatar Dashdorj; Eric R. Henry; Tim Graber; Robert Henning; Michael Wulff; Gerhard Hummer; Mikio Kataoka; Philip A. Anfinrud
To understand how signaling proteins function, it is crucial to know the time-ordered sequence of events that lead to the signaling state. We recently developed on the BioCARS 14-IDB beamline at the Advanced Photon Source the infrastructure required to characterize structural changes in protein crystals with near-atomic spatial resolution and 150-ps time resolution, and have used this capability to track the reversible photocycle of photoactive yellow protein (PYP) following trans-to-cis photoisomerization of its p-coumaric acid (pCA) chromophore over 10 decades of time. The first of four major intermediates characterized in this study is highly contorted, with the pCA carbonyl rotated nearly 90° out of the plane of the phenolate. A hydrogen bond between the pCA carbonyl and the Cys69 backbone constrains the chromophore in this unusual twisted conformation. Density functional theory calculations confirm that this structure is chemically plausible and corresponds to a strained cis intermediate. This unique structure is short-lived (∼600 ps), has not been observed in prior cryocrystallography experiments, and is the progenitor of intermediates characterized in previous nanosecond time-resolved Laue crystallography studies. The structural transitions unveiled during the PYP photocycle include trans/cis isomerization, the breaking and making of hydrogen bonds, formation/relaxation of strain, and gated water penetration into the interior of the protein. This mechanistically detailed, near-atomic resolution description of the complete PYP photocycle provides a framework for understanding signal transduction in proteins, and for assessing and validating theoretical/computational approaches in protein biophysics.
Journal of the American Chemical Society | 2009
Morten H. Christensen; Kristoffer Haldrup; K. Bechgaard; Robert Feidenhans’l; Qingyu Kong; Marco Cammarata; Manuela Lo Russo; Michael Wulff; Niels Harrit; Martin Meedom Nielsen
The structure of the (3)A(2u) excited state of tetrakis-mu-pyrophosphitodiplatinate(II) in aqueous solution is investigated by time-resolved X-ray scattering on a time scale from 100 ps to 1 micros after optical pumping. The primary structural parameter, the Pt-Pt distance, is found to be 2.74 A, which is 0.24 A shorter than the ground-state value. The contraction is in excellent agreement with earlier estimates based on spectroscopic data in solution and diffraction data in the crystalline state. As a second structural parameter, the distance between the P planes in the (3)A(2u) excited state was determined to be 2.93 A, i.e., the same as that in the ground state. This result implies that a slight lengthening of the Pt-P bond occurs following excitation.
Structure | 2009
Magnus Andersson; Erik Malmerberg; Sebastian Westenhoff; Gergely Katona; Marco Cammarata; Annemarie B. Wöhri; Linda C. Johansson; Friederike Ewald; Mattias Eklund; Michael Wulff; Jan Davidsson; Richard Neutze
Bacteriorhodopsin and proteorhodopsin are simple heptahelical proton pumps containing a retinal chromophore covalently bound to helix G via a protonated Schiff base. Following the absorption of a photon, all-trans retinal is isomerized to a 13-cis conformation, initiating a sequence of conformational changes driving vectorial proton transport. In this study we apply time-resolved wide-angle X-ray scattering to visualize in real time the helical motions associated with proton pumping by bacteriorhodopsin and proteorhodopsin. Our results establish that three conformational states are required to describe their photocycles. Significant motions of the cytoplasmic half of helix F and the extracellular half of helix C are observed prior to the primary proton transfer event, which increase in amplitude following proton transfer. These results both simplify the structural description to emerge from intermediate trapping studies of bacteriorhodopsin and reveal shared dynamical principles for proton pumping.
Journal of the American Chemical Society | 2012
Tae Wu Kim; Jae Hyuk Lee; Jungkweon Choi; Kyung Hwan Kim; Luuk J. G. W. van Wilderen; Laurent Guérin; Young-Min Kim; Yang Ouk Jung; Cheolhee Yang; Jeongho Kim; Michael Wulff; Jasper J. van Thor; Hyotcherl Ihee
Photoreceptor proteins play crucial roles in receiving light stimuli that give rise to the responses required for biological function. However, structural characterization of conformational transition of the photoreceptors has been elusive in their native aqueous environment, even for a prototype photoreceptor, photoactive yellow protein (PYP). We employ pump-probe X-ray solution scattering to probe the structural changes that occur during the photocycle of PYP in a wide time range from 3.16 μs to 300 ms. By the analysis of both kinetics and structures of the intermediates, the structural progression of the protein in the solution phase is vividly visualized. We identify four structurally distinct intermediates and their associated five time constants and reconstructed the molecular shapes of the four intermediates from time-independent, species-associated difference scattering curves. The reconstructed structures of the intermediates show the large conformational changes such as the protrusion of N-terminus, which is restricted in the crystalline phase due to the crystal contact and thus could not be clearly observed by X-ray crystallography. The protrusion of the N-terminus and the protein volume gradually increase with the progress of the photocycle and becomes maximal in the final intermediate, which is proposed to be the signaling state. The data not only reveal that a common kinetic mechanism is applicable to both the crystalline and the solution phases, but also provide direct evidence for how the sample environment influences structural dynamics and the reaction rates of the PYP photocycle.
Review of Scientific Instruments | 2009
Marco Cammarata; Laurent Eybert; Friederike Ewald; Wolfgang Reichenbach; Michael Wulff; Philip A. Anfinrud; Friedrich Schotte; Anton Plech; Qingyu Kong; Maciej Lorenc; Bernd Lindenau; Jürgen Räbiger; Stephan Polachowski
A chopper system for time resolved pump-probe experiments with x-ray beams from a synchrotron is described. The system has three parts: a water-cooled heatload chopper, a high-speed chopper, and a millisecond shutter. The chopper system, which is installed in beamline ID09B at the European Synchrotron Radiation Facility, provides short x-ray pulses for pump-probe experiments with ultrafast lasers. The chopper system can produce x-ray pulses as short as 200 ns in a continuous beam and repeat at frequencies from 0 to 3 kHz. For bunch filling patterns of the synchrotron with pulse separations greater than 100 ns, the high-speed chopper can isolate single 100 ps x-ray pulses that are used for the highest time resolution. A new rotor in the high-speed chopper is presented with a single pulse (100 ps) and long pulse (10 micros) option. In white beam experiments, the heatload of the (noncooled) high-speed chopper is lowered by a heatload chopper, which absorbs 95% of the incoming power without affecting the pulses selected by the high speed chopper.
Journal of Chemical Physics | 2006
Marco Cammarata; M. Lorenc; Tae Kyu Kim; Jonghoon Lee; Qingyu Kong; E. Pontecorvo; M. Lo Russo; Giorgio Schirò; Antonio Cupane; Michael Wulff; Hyotcherl Ihee
The time-resolved diffraction signal from a laser-excited solution has three principal components: the solute-only term, the solute-solvent cross term, and the solvent-only term. The last term is very sensitive to the thermodynamic state of the bulk solvent, which may change during a chemical reaction due to energy transfer from light-absorbing solute molecules to the surrounding solvent molecules and the following relaxation to equilibrium with the environment around the scattering volume. The volume expansion coefficient alpha for a liquid is typically approximately 1 x 10(-3) K(-1), which is about 1000 times greater than for a solid. Hence solvent scattering is a very sensitive on-line thermometer. The decomposition of the scattered x-ray signal has so far been aided by molecular dynamics (MD) simulations, a method capable of simulating the solvent response as well as the solute term and solute/solvent cross terms for the data analysis. Here we present an experimental procedure, applicable to most hydrogen containing solvents, that directly measures the solvent response to a transient temperature rise. The overtone modes of OH stretching and CH3 asymmetric stretching in liquid methanol were excited by near-infrared femtosecond laser pulses at 1.5 and 1.7 microm and the ensuing hydrodynamics, induced by the transfer of heat from a subset of excited CH3OH* to the bulk and the subsequent thermal expansion, were probed by 100 ps x-ray pulses from a synchrotron. The time-resolved data allowed us to extract two key differentials: the change in the solvent diffraction from a temperature change at constant density, seen at a very short time delay approximately 100 ps, and a term from a change in density at constant temperature. The latter term becomes relevant at later times approximately 1 mus when the bulk of liquid expands to accommodate its new temperature at ambient pressure. These two terms are the principal building blocks in the hydrodynamic equation of state, and they are needed in a self-consistent reconstruction of the solvent response during a chemical reaction. We compare the experimental solvent terms with those from MD simulations. The use of experimentally determined solvent differentials greatly improved the quality of global fits when applied to the time-resolved data for C2H4I2 dissolved in methanol.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997
Michael Wulff; Friedrich Schotte; Graham Naylor; Dominique Bourgeois; Keith Moffat; G. Mourou
Abstract We review the time structure of synchrotron radiation and its use for fast time-resolved diffraction experiments in macromolecular photocycles using flash photolysis to initiate the reaction. The source parameters and optics for ID09 at ESRF are presented together with the phase-locked chopper and femtosecond laser. The chopper can set up a 900 Hz pulse train of 100 ps pulses from the hybrid bunch-mode and, in conjunction with a femtosecond laser, it can be used for stroboscopic data collection with both monochromatic and polychromatic beams. Single-pulse Laue data from cutinase, a 22 kD lipolic enzyme, are presented which show that the quality of single-pulse Laue patterns are sufficient to refine the excited state(s) in a reaction pathway from a known ground state. The flash photolysis technique is discussed and an example is given for heme proteins. The radiation damage from a laser pulse in the femto and picosecond range can be reduced by triggering at a wavelength where the interaction is strong. We propose the use of microcrystals in the range 25–50 μm for efficient photolysis with femto and picosecond pulses. The performance of circular storage rings is compared with the predicted performance of an X-ray free electron laser (XFEL). The combination of micro beams, a gain of 105 photons per pulse and an ultrashort pulse length of 100 fs is likely to improve pulsed diffraction data very substantially. It may be used to image coherent nuclear motion at atomic resolution in ultrafast uni-molecular reactions.
Science | 2010
Annemarie B. Wöhri; Gergely Katona; Linda C. Johansson; Emelie Fritz; Erik Malmerberg; Magnus Andersson; Jonathan Vincent; Mattias Eklund; Marco Cammarata; Michael Wulff; Jan Davidsson; Gerrit Groenhof; Richard Neutze
Light Structures Absorption of light by photosynthetic reaction centers causes structural changes and triggers a series of electron transfer reactions, resulting in a transmembrane potential difference that can be used to drive the subsequent chemistry. The initial electron transfer generates a charge-separated state that must be stabilized to prevent dissipation of energy through recombination. Wöhri et al. (p. 630) have used time-resolved Laue diffraction crystallography to observe light-induced conformational changes that occur within milliseconds of photooxidation of the dimer of bacteriochlorophyll molecules, known as the “special pair,” in the photosynthetic reaction center of Blastochloris viridis. Stabilization appears to occur because of the deprotonation of a conserved tyrosine residue that moves closer to the special pair. Fleeting molecular events are observed as light illuminates chlorophyll to initiate photosynthesis. Photosynthetic reaction centers convert the energy content of light into a transmembrane potential difference and so provide the major pathway for energy input into the biosphere. We applied time-resolved Laue diffraction to study light-induced conformational changes in the photosynthetic reaction center complex of Blastochloris viridis. The side chain of TyrL162, which lies adjacent to the special pair of bacteriochlorophyll molecules that are photooxidized in the primary light conversion event of photosynthesis, was observed to move 1.3 angstroms closer to the special pair after photoactivation. Free energy calculations suggest that this movement results from the deprotonation of this conserved tyrosine residue and provides a mechanism for stabilizing the primary charge separation reactions of photosynthesis.