Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael X. Zhu is active.

Publication


Featured researches published by Michael X. Zhu.


Molecular Cell | 2002

A Unified Nomenclature for the Superfamily of TRP Cation Channels

Craig Montell; Lutz Birnbaumer; Veit Flockerzi; René J. M. Bindels; Elspeth A. Bruford; Michael J. Caterina; David E. Clapham; Christian Harteneck; Stefan Heller; David Julius; Itaru Kojima; Yasuo Mori; Reinhold Penner; Dirk Prawitt; Andrew M. Scharenberg; Günter Schultz; Nobuyoshi Shimizu; Michael X. Zhu

The TRP superfamily includes a diversity of non-voltage-gated cation channels that vary significantly in their selectivity and mode of activation. Nevertheless, members of the TRP superfamily share significant sequence homology and predicted structural similarities. Currently, most of the genes and proteins that comprise the TRP superfamily have multiple names and, in at least one instance, two distinct genes belonging to separate subfamilies have the same name. Moreover, there are many cases in which highly related proteins that belong to the same subfamily have unrelated names. Therefore, to minimize confusion, we propose a unified nomenclature for the TRP superfamily.The current effort to unify the TRP nomenclature focuses on three subfamilies (TRPC, TRPV, and TRPM) that bear significant similarities to the founding member of this superfamily, Drosophila TRP, and which include highly related members in worms, flies, mice, and humans (Table 1)(Table 1). Members of the three subfamilies contain six transmembrane segments, a pore loop separating the final two transmembrane segments, and similarity in the lengths of the cytoplasmic and extracellular loops. In addition, the charged residues in the S4 segment that appear to contribute to the voltage sensor in voltage-gated ion channels are not conserved. The TRP-Canonical (TRPC) subfamily (formerly short-TRPs or STRPs) is comprised of those proteins that are the most highly related to Drosophila TRP. The TRPV subfamily (formerly OTRPC), is so named based on the original designation, Vanilloid Receptor 1 (VR1), for the first mammalian member of this subfamily (now TRPV1). The name for the TRPM subfamily (formerly long-TRPs or LTRPs) is derived from the first letter of Melastatin, the former name (now TRPM1) of the founding member of this third subfamily of TRP-related proteins. Based on amino acid homologies, the mammalian members of these three subfamilies can be subdivided into several groups each (Table 2Table 2 and Figure 1Figure 1) .Table 1Number of TRP Genes in Worms (C. elegans), Flies (Drosophila melanogaster), Mice, and HumansSubfamilyWormsFliesMiceHumansTRPC3376aaTRPV5255TRPM4188aTRPC2 is a pseudogene and is not counted.Table 2Nomenclature of the Mammalian TRP SuperfamilyNameGroupFormer NamesAccession NumbersTRPC11TRP1CAA61447, AAA93252TRPC1TRPC22TRP2X89067, AAD17195, AAD17196, AAG29950, AAG29951, AAD31453,TRPC2CAA06964TRPC33TRP3AAC51653TRPC3TRPC44TRP4CAA68125, BAA23599TRPC4TRPC54TRP5AAC13550, CAA06911, CAA06912TRPC5TRPC63TRP6NP_038866TRPC6TRPC73TRP7AAD42069, NP_065122TRPC7TRPV11VR1AAC53398OTRPC1TRPV21VRL-1AAD26363, AAD26364, BAA78478OTRPC2GRCTRPV3 (not assigned)TRPV42OTRPC4AAG17543, AAG16127, AAG28027, AAG28028, AAG28029,VR-OACCAC20703TRP12VRL-2TRPV53ECaC1CAB40138CaT2TRPV63CaT1AAD47636ECaC2CAC20416CaT-LCAC20417TRPM11MelastatinAAC13683, AAC80000TRPM22TRPC7BAA34700LTRPC2TRPM31KIAA1616AA038185LTRPC3TRPM43TRPM4H18835LTRPC4TRPM53MTR1AAF26288LTRPC5TRPM64Chak2AF350881TRPM74TRP-PLIKAAF73131Chak1LTRPC7TRPM82TRP-p8AC005538Indicated are the suggested gene and protein names, the groups within each subfamily, the former names, and accession numbers.Figure 1Phylogenetic Tree of the TRP SuperfamilyThe tree, which was adapted from Clapham et al., 2001 (Nat. Rev. Neurosci. 2, 387–396), was calculated using the neighbor-joining method and human, rat, and mouse sequences.View Large Image | View Hi-Res Image | Download PowerPoint SlideThe numbering system for the mammalian TRPC, TRPV, and TRPM proteins takes into account the order of their discovery and, in as many cases as possible, the number that has already been assigned to the genes and proteins (Table 2)(Table 2). In the case of the TRPV proteins, the numbering system is also based in part on the groupings of the TRPV proteins. New members of each subfamily will maintain the same root name and, with the exception of TRPV3, will be assigned the next number in the sequence. Currently, TRPV3 is unassigned to maintain the TRPV1/ TRPV2 and TRPV5/TRPV6 groupings and so that the former OTRPC4 could be renamed TRPV4. The next TRPV protein will be designated TRPV3.We hope this new nomenclature will add clarity to the field and simplify the naming of new members of the TRP superfamily. We recommend that accession numbers be used whenever it is necessary to unambiguously specify a given variant resulting from alternative mRNA splicing. Finally, this nomenclature has been approved by the HUGO Gene Nomenclature Committee and we recommend that this system be used in all future publications concerning TRPC, TRPV, and TRPM subfamily members.


Nature | 2009

NAADP mobilizes calcium from acidic organelles through two-pore channels

Peter J. Calcraft; Margarida Ruas; Zui Pan; Xiaotong Cheng; Abdelilah Arredouani; Xuemei Hao; Jisen Tang; Katja Rietdorf; Lydia Teboul; Kai Ting Chuang; Peihui Lin; Rui Xiao; Chunbo Wang; Yingmin Zhu; Yakang Lin; Christopher N. Wyatt; John Parrington; Jianjie Ma; A. Mark Evans; Antony Galione; Michael X. Zhu

Ca2+ mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP3), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP3 and cyclic ADP ribose cause the release of Ca2+ from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP3 and ryanodine receptors (InsP3Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca2+ from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca2+ release from lysosome-related stores that is subsequently amplified by Ca2+-induced Ca2+ release by InsP3Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca2+ stores or by blocking InsP3Rs. Thus, TPCs form NAADP receptors that release Ca2+ from acidic organelles, which can trigger further Ca2+ signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca2+ signals in animal cells, and will advance our understanding of the physiological role of NAADP.


Journal of Biological Chemistry | 2004

2-Aminoethoxydiphenyl Borate Is a Common Activator of TRPV1, TRPV2, and TRPV3

Hongzhen Hu; Qihai Gu; Chunbo Wang; Craig K. Colton; Jisen Tang; Mariko Kinoshita-Kawada; Lu Yuan Lee; Jackie D. Wood; Michael X. Zhu

The transient receptor potential (TRP) superfamily contains a large number of proteins encoding cation permeable channels that are further divided into TRPC (canonical), TRPM (melastatin), and TRPV (vanilloid) subfamilies. Among the six TRPV members, TRPV1, TRPV2, TRPV3, and TRPV4 form heat-activated cation channels, which serve diverse functions ranging from nociception to osmolality regulation. Although chemical activators for TRPV1 and TRPV4 are well documented, those for TRPV2 and TRPV3 are lacking. Here we show that in the absence of other stimuli, 2-aminoethoxydiphenyl borate (2APB) activates TRPV1, TRPV2, and TRPV3, but not TRPV4, TRPV5, and TRPV6 expressed in HEK293 cells. In contrast, 2APB inhibits the activity of TRPC6 and TRPM8 evoked by 1-oleolyl-2-acetyl-sn-glycerol and menthol, respectively. In addition, low levels of 2APB strongly potentiate the effect of capsaicin, protons, and heat on TRPV1 as well as that of heat on TRPV3 expressed in Xenopus oocytes. In dorsal root ganglia neurons, supra-additive stimulations were evoked by 2APB and capsaicin or 2APB and acid. Our data suggest the existence of a common activation mechanism for TRPV1, TRPV2, and TRPV3 that may serve as a therapeutic target for pain management and treatment for diseases caused by hypersensitivity and temperature misregulation.


Molecular Cell | 1999

The N-Terminal Domain of the IP3 Receptor Gates Store-Operated hTrp3 Channels

Kirill Kiselyov; Gregory A. Mignery; Michael X. Zhu; Shmuel Muallem

In the present work, we studied the interaction and effect of several IP3 receptor (IP3R) constructs on the gating of the store-operated (SOC) hTrp3 channel. Full-length IP3R coupled to silent hTrp3 channels in intact cells but did not activate them until stores were depleted of Ca2+. By contrast, constructs containing the IP3-binding domain activated silent hTrp3 channels in unstimulated cells and restored gating of hTrp3 by IP3 in excised plasma membrane patches. We conclude that the N-terminal domain of the IP3R functions as a gate and is sufficient for activation of SOCs. The sensing and transduction domains of the IP3R are required to maintain SOCs in an inactive state.


Cell | 2012

TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes

Xiang Wang; Xiaoli Zhang; Xian Ping Dong; Mohammad Samie; Xinran Li; Xiping Cheng; Andrew Goschka; Dongbiao Shen; Yandong Zhou; Janice Harlow; Michael X. Zhu; David E. Clapham; Dejian Ren; Haoxing Xu

Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels

Yanhong Liao; Christian Erxleben; Joel Abramowitz; Veit Flockerzi; Michael X. Zhu; David L. Armstrong; Lutz Birnbaumer

Receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) into cells are functions performed by all higher eukaryotic cells, and their impairment is life-threatening. The main molecular components of this pathway appear to be known. However, the molecular make-up of channels mediating ROCE and SOCE is largely unknown. One hypothesis proposes SOCE channels to be formed solely by Orai proteins. Another proposes SOCE channels to be composed of both Orai and C-type transient receptor potential (TRPC) proteins. Both hypotheses propose that the channels are activated by STIM1, a sensor of the filling state of the Ca2+ stores that activates Ca2+ entry when stores are depleted. The role of Orai in SOCE has been proven. Here we show the TRPC-dependent reconstitution of Icrac, the electrophysiological correlate to SOCE, by expression of Orai1; we also show that R91W-Orai1 can inhibit SOCE and ROCE and that Orai1 and STIM1 expression leads to functional expression of Gd-resistant ROCE. Because channels that mediate ROCE are accepted to be formed with the participation of TRPCs, our data show functional interaction between ROCE and SOCE components. We propose that SOCE/Icrac channels are composed of heteromeric complexes that include TRPCs and Orai proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain

Zongming Zhang; Jisen Tang; Svetlana B. Tikunova; J. David Johnson; Zhangguo Chen; Ning Qin; Alexander Dietrich; Enrico Stefani; Lutz Birnbaumer; Michael X. Zhu

Mammalian homologues of Drosophila Trp form plasma membrane channels that mediate Ca2+ influx in response to activation of phospholipase C and internal Ca2+ store depletion. Previous studies showed that human Trp3 is activated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and identified interacting domains, one on Trp and two on IP3R. We now find that Trp3 binds Ca2+-calmodulin (Ca2+/CaM) at a site that overlaps with the IP3R binding domain. Using patch-clamp recordings from inside-out patches, we further show that Trp3 has a high intrinsic activity that is suppressed by Ca2+/CaM under resting conditions, and that Trp3 is activated by the following: a Trp-binding peptide from IP3R that displaces CaM from Trp3, a myosin light chain kinase Ca2+/CaM binding peptide that prevents CaM from binding to Trp3, and calmidazolium, an inactivator of Ca2+/CaM. We conclude that inhibition of the inhibitory action of CaM is a key step of Trp3 channel activation by IP3Rs.


Journal of Biological Chemistry | 2005

Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4

Bernd Nilius; Jean Prenen; Jisen Tang; Chunbo Wang; Grzegorz Owsianik; Annelies Janssens; Thomas Voets; Michael X. Zhu

TRPM4, a Ca2+-activated cation channel of the transient receptor potential superfamily, undergoes a fast desensitization to Ca2+. The mechanisms underlying the alterations in Ca2+ sensitivity are unknown. Here we show that cytoplasmic ATP reversed Ca2+ sensitivity after desensitization, whereas mutations to putative ATP binding sites resulted in faster and more complete desensitization. Phorbol ester-induced activation of protein kinase C (PKC) increased the Ca2+ sensitivity of wild-type TRPM4 but not of two mutants mutated at putative PKC phosphorylation sites. Overexpression of a calmodulin mutant unable to bind Ca2+ dramatically reduced TRPM4 activation. We identified five Ca2+-calmodulin binding sites in TRPM4 and showed that deletion of any of the three C-terminal sites strongly impaired current activation by reducing Ca2+ sensitivity and shifting the voltage dependence of activation to very positive potentials. Thus, the Ca2+ sensitivity of TRPM4 is regulated by ATP, PKC-dependent phosphorylation, and calmodulin binding at the C terminus.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry

Yanhong Liao; Nicholas W. Plummer; Margaret D. George; Joel Abramowitz; Michael X. Zhu; Lutz Birnbaumer

TRPC and Orai proteins have both been proposed to form Ca2+-selective, store-operated calcium entry (SOCE) channels that are activated by store-depletion with Ca2+ chelators or calcium pump inhibitors. In contrast, only TRPC proteins have been proposed to form nonselective receptor-operated calcium entry (ROCE) cation channels that are activated by Gq/Gi-PLCβ signaling, which is the physiological stimulus for store depletion. We reported previously that a dominant negative Orai1 mutant, R91W, inhibits Ca2+ entry through both SOCE and ROCE channels, implicating Orai participation in both channel complexes. However, the argument for Orai participating in ROCE independently of store depletion is tenuous because store depletion is an integral component of the ROCE response, which includes formation of IP3, a store-depleting agent. Here we show that the R91W mutant also blocks diacylglycerol (DAG)-activated Ca2+ entry into cells that stably, or transiently, express DAG-responsive TRPC proteins. This strongly suggests that Orai and TRPC proteins form complexes that participate in Ca2+ entry with or without activation of store depletion. To integrate these results with recent data linking SOCE with recruitment of Orai and TRPCs to lipid rafts by STIM, we develop the hypothesis that Orai:TRPC complexes recruited to lipid rafts mediate SOCE, whereas the same complexes mediate ROCE when they are outside of lipid rafts. It remains to be determined whether the molecules forming the permeation pathway are the same when Orai:TRPC complexes mediate ROCE or SOCE.


Journal of Biological Chemistry | 2006

TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells.

Michael Poteser; Annarita Graziani; Christian Rosker; Petra Eder; Isabella Derler; Heike Kahr; Michael X. Zhu; Christoph Romanin; Klaus Groschner

Canonical transient receptor potential proteins (TRPC) have been proposed to form homo- or heteromeric cation channels in a variety of tissues, including the vascular endothelium. Assembly of TRPC multimers is incompletely understood. In particular, heteromeric assembly of distantly related TRPC isoforms is still a controversial issue. Because we have previously suggested TRPC proteins as the basis of the redox-activated cation conductance of porcine aortic endothelial cells (PAECs), we set out to analyze the TRPC subunit composition of endogenous endothelial TRPC channels and report here on a redox-sensitive TRPC3-TRPC4 channel complex. The ability of TRPC3 and TRPC4 proteins to associate and to form a cation-conducting pore complex was supported by four lines of evidence as follows: 1) Co-immunoprecipitation experiments in PAECs and in HEK293 cells demonstrated the association of TRPC3 and TRPC4 in the same complex. 2) Fluorescence resonance energy transfer analysis demonstrated TRPC3-TRPC4 association, involving close proximity between the N terminus of TRPC4 and the C terminus of TRPC3 subunits. 3) Co-expression of TRPC3 and TRPC4 in HEK293 cells generated a channel that displayed distinct biophysical and regulatory properties. 4) Expression of dominant-negative TRPC4 proteins suppressed TRPC3-related channel activity in the HEK293 expression system and in native endothelial cells. Specifically, an extracellularly hemagglutinin (HA)-tagged TRPC4 mutant, which is sensitive to blockage by anti-HA-antibody, was found to transfer anti-HA sensitivity to both TRPC3-related currents in the HEK293 expression system and the redox-sensitive cation conductance of PAECs. We propose TRPC3 and TRPC4 as subunits of native endothelial cation channels that are governed by the cellular redox state.

Collaboration


Dive into the Michael X. Zhu's collaboration.

Top Co-Authors

Avatar

Jinbin Tian

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Tian-Le Xu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yingmin Zhu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hongzhen Hu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge