Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Y. Bonner is active.

Publication


Featured researches published by Michael Y. Bonner.


Nature Communications | 2015

Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3

Vinodkumar B. Pillai; Sadhana Samant; Nagalingam R. Sundaresan; H. Raghuraman; G. Kim; Michael Y. Bonner; Jack L. Arbiser; Douglas I. Walker; Dean P. Jones; David Gius; Mahesh P. Gupta

Honokiol (HKL) is a natural biphenolic compound derived from the bark of magnolia trees with anti-inflammatory, anti-oxidative, anti-tumor and neuroprotective properties. Here we show that HKL blocks agonist-induced and pressure overload-mediated, cardiac hypertrophic responses, and ameliorates pre-existing cardiac hypertrophy, in mice. Our data suggest that the anti-hypertrophic effects of HKL depend on activation of the deacetylase SIRT3. We demonstrate that HKL is present in mitochondria, enhances SIRT3 expression nearly two-fold and suggest that HKL may bind to SIRT3 to further increase its activity. Increased SIRT3 activity is associated with reduced acetylation of mitochondrial SIRT3 substrates, MnSOD and OSCP. HKL-treatment increases mitochondrial rate of oxygen consumption and reduces ROS synthesis in wild-type, but not in SIRT3-KO cells. Moreover, HKL-treatment blocks cardiac fibroblast proliferation and differentiation to myofibroblasts in SIRT3-dependent manner. These results suggest that HKL is a pharmacological activator of SIRT3 capable of blocking, and even reversing, the cardiac hypertrophic response.


Journal of Clinical Investigation | 2009

Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice

Sulochana S. Bhandarkar; Marisa Jaconi; Levi Fried; Michael Y. Bonner; Benjamin Lefkove; Baskaran Govindarajan; Betsy N. Perry; Ravi Parhar; Jamie MacKelfresh; Allie Sohn; Michael Stouffs; Ulla G. Knaus; George D. Yancopoulos; Yvonne Reiss; Andrew V. Benest; Hellmut G. Augustin; Jack L. Arbiser

Hemangiomas are the most common type of tumor in infants. As they are endothelial cell-derived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle T-transformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/-, and Ang2-/- mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/- cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/- cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function.


Science Translational Medicine | 2012

Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma.

Jennifer M. Munson; Levi Fried; Sydney A. Rowson; Michael Y. Bonner; Lohitash Karumbaiah; Begoña Diaz; Sara A. Courtneidge; Ulla G. Knaus; Daniel J. Brat; Jack L. Arbiser; Ravi V. Bellamkonda

A novel compound, Imipramine Blue, enhances efficacy of chemotherapy in a single treatment against a rodent astrocytoma model in vivo by inhibiting cell invasion. Stopping the Invasion A hallmark of brain cancer (glioma) is its diffuse nature, where the cancer cells migrate easily through the soft tissue, well away from the tumor site. By comparison, solid tumors, such as those found in breast, lung, and prostate, are more compact with defined margins. It is this cancerous invasion that makes gliomas so difficult to treat surgically and chemotherapeutically. Now, Munson and colleagues describe the synthesis and application of a new small molecule called Imipramine Blue (IB) to stop migrating cancer cells in their tracks. When combined with the anticancer drug doxorubicin (DXR), IB can help prolong the lives of diseased animals. Munson et al. first tested the anti-invasive properties of IB in vitro in both human and rat glioma cell lines and in patient-derived neurospheres. Compared to untreated controls, IB was able to prevent cell outgrowth and invasion, without being toxic to the healthy cells. Similarly, IB packaged in liposomes for easy delivery (“nano-IB”) did not damage tissues or cause inflammation when injected into healthy rats—an important consideration for moving toward human testing. The authors then administered nano-IB to rats with an aggressive form of glioma (RT2) that shows key features of human brain cancer. Animals were treated with two doses of nano-IB and then killed for tumor analysis. Because IB inhibits invasion, the treated tumors were more compact than the controls. When the nano-IB was combined with a potent chemotherapeutic, liposomal DXR, 100% of the diseased rats were able to survive for 180 days, without any signs of regrowth by day 200. By comparison, only 33% of the animals treated with DXR lived that long. No untreated animals survived beyond 50 days. Munson and colleagues also explored the mechanism behind IB’s anti-invasive properties, arriving at a molecular pathway that disrupts actin fiber formation; that is, cells are rendered completely unable to migrate without their intracellular actin machinery. By combining with a chemotherapeutic already used in the clinic, this invasion-stopping compound is poised for testing in more animal models, with the hopes of Food and Drug Administration approval. The invasive nature of glioblastoma (GBM) represents a major clinical challenge contributing to poor outcomes. Invasion of GBM into healthy tissue restricts chemotherapeutic access and complicates surgical resection. Here, we test the hypothesis that an effective anti-invasive agent can “contain” GBM and increase the efficacy of chemotherapy. We report a new anti-invasive small molecule, Imipramine Blue (IB), which inhibits invasion of glioma in vitro when tested against several models. IB inhibits NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase–mediated reactive oxygen species generation and alters expression of actin regulatory elements. In vivo, liposomal IB (nano-IB) halts invasion of glioma, leading to a more compact tumor in an aggressively invasive RT2 syngeneic astrocytoma rodent model. When nano-IB therapy was followed by liposomal doxorubicin (nano-DXR) chemotherapy, the combination therapy prolonged survival compared to nano-IB or nano-DXR alone. Our data demonstrate that nano-IB–mediated containment of diffuse glioma enhanced the efficacy of nano-DXR chemotherapy, demonstrating the promise of an anti-invasive compound as an adjuvant treatment for glioma.


Cellular and Molecular Life Sciences | 2012

Targeting NADPH oxidases for the treatment of cancer and inflammation

Michael Y. Bonner; Jack L. Arbiser

NADPH oxidases are a family of oxidases that utilize molecular oxygen to generate hydrogen peroxide and superoxide, thus indicating physiological functions of these highly reactive and short-lived species. The regulation of these NADPH oxidases (nox) enzymes is complex, with many members of this family exhibiting complexity in terms of subunit composition, cellular location, and tissue-specific expression. While the complexity of the nox family (Nox1–5, Duox1, 2) is daunting, the complexity also allows for targeting of NADPH oxidases in disease states. In this review, we discuss which inflammatory and malignant disorders can be targeted by nox inhibitors, as well as clinical experience in the use of such inhibitors.


Breast Cancer Research | 2012

Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis

Arumugam Nagalingam; Jack L. Arbiser; Michael Y. Bonner; Neeraj K. Saxena; Dipali Sharma

IntroductionHonokiol, a small-molecule polyphenol isolated from magnolia species, is widely known for its therapeutic potential as an antiinflammatory, antithrombosis, and antioxidant agent, and more recently, for its protective function in the pathogenesis of carcinogenesis. In the present study, we sought to examine the effectiveness of honokiol in inhibiting migration and invasion of breast cancer cells and to elucidate the underlying molecular mechanisms.MethodsClonogenicity and three-dimensional colony-formation assays were used to examine breast cancer cell growth with honokiol treatment. The effect of honokiol on invasion and migration of breast cancer cells was evaluated by using Matrigel invasion, scratch-migration, spheroid-migration, and electric cell-substrate impedance sensing (ECIS)-based migration assays. Western blot and immunofluorescence analysis were used to examine activation of the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) axis. Isogenic LKB1-knockdown breast cancer cell line pairs were developed. Functional importance of AMPK activation and LKB1 overexpression in the biologic effects of honokiol was examined by using AMPK-null and AMPK-wild type (WT) immortalized mouse embryonic fibroblasts (MEFs) and isogenic LKB1-knockdown cell line pairs. Finally, mouse xenografts, immunohistochemical and Western blot analysis of tumors were used.ResultsAnalysis of the underlying molecular mechanisms revealed that honokiol treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity, as evidenced by increased phosphorylation of the downstream target of AMPK, acetyl-coenzyme A carboxylase (ACC) and inhibition of phosphorylation of p70S6kinase (pS6K) and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). By using AMPK-null and AMPK-WT (MEFs), we found that AMPK is required for honokiol-mediated modulation of pACC-pS6K. Intriguingly, we discovered that honokiol treatment increased the expression and cytoplasmic translocation of tumor-suppressor LKB1 in breast cancer cells. LKB1 knockdown inhibited honokiol-mediated activation of AMPK and, more important, inhibition of migration and invasion of breast cancer cells. Furthermore, honokiol treatment resulted in inhibition of breast tumorigenesis in vivo. Analysis of tumors showed significant increases in the levels of cytoplasmic LKB1 and phospho-AMPK in honokiol-treated tumors.ConclusionsTaken together, these data provide the first in vitro and in vivo evidence of the integral role of the LKB1-AMPK axis in honokiol-mediated inhibition of the invasion and migration of breast cancer cells. In conclusion, honokiol treatment could potentially be a rational therapeutic strategy for breast carcinoma.


British Journal of Cancer | 2013

Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78

Shaun Martin; Heather K. Lamb; C Brady; Benjamin Lefkove; Michael Y. Bonner; Paul Thompson; Penny E. Lovat; Jack Arbiser; Alastair R. Hawkins; Christopher P.F. Redfern

Background:Glucose regulated protein 78 (GRP78) functions as a sensor of endoplasmic reticulum (ER) stress. The aim of this study was to test the hypothesis that molecules that bind to GRP78 induce the unfolded protein response (UPR) and enhance cell death in combination with ER stress inducers.Methods:Differential scanning calorimetry (DSC), measurement of cell death by flow cytometry and the induction of ER stress markers using western blotting.Results:Epigallocatechin gallate (EGCG), a flavonoid component of Green Tea Camellia sinensis, and honokiol (HNK), a Magnolia grandiflora derivative, bind to unfolded conformations of the GRP78 ATPase domain. Epigallocatechin gallate and HNK induced death in six neuroectodermal tumour cell lines tested. Levels of death to HNK were twice that for EGCG; half-maximal effective doses were similar but EGCG sensitivity varied more widely between cell types. Honokiol induced ER stress and UPR as predicted from its ability to interact with GRP78, but EGCG was less effective. With respect to cell death, HNK had synergistic effects on melanoma and glioblastoma cells with the ER stress inducers fenretinide or bortezomib, but only additive (fenretinide) or inhibitory (bortezomib) effects on neuroblastoma cells.Conclusion:Honokiol induces apoptosis due to ER stress from an interaction with GRP78. The data are consistent with DSC results that suggest that HNK binds to GRP78 more effectively than EGCG. Therefore, HNK may warrant development as an antitumour drug.


Molecular Oncology | 2014

Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axis

Dimiter B. Avtanski; Arumugam Nagalingam; Michael Y. Bonner; Jack L. Arbiser; Neeraj K. Saxena; Dipali Sharma

Epithelial—mesenchymal transition (EMT), a critical step in the acquisition of metastatic state, is an attractive target for therapeutic interventions directed against tumor metastasis. Honokiol (HNK) is a natural phenolic compound isolated from an extract of seed cones from Magnolia grandiflora. Recent studies from our lab show that HNK impedes breast carcinogenesis. Here, we provide molecular evidence that HNK inhibits EMT in breast cancer cells resulting in significant downregulation of mesenchymal marker proteins and concurrent upregulation of epithelial markers. Experimental EMT induced by exposure to TGFβ and TNFα in spontaneously immortalized nontumorigenic human mammary epithelial cells is also completely reversed by HNK as evidenced by morphological as well as molecular changes. Investigating the downstream mediator(s) that may direct EMT inhibition by HNK, we found functional interactions between HNK, Stat3, and EMT‐signaling components. In vitro and in vivo analyses show that HNK inhibits Stat3 activation in breast cancer cells and tumors. Constitutive activation of Stat3 abrogates HNK‐mediated activation of epithelial markers whereas inhibition of Stat3 using small molecule inhibitor, Stattic, potentiates HNK‐mediated inhibition of EMT markers, invasion and migration of breast cancer cells. Mechanistically, HNK inhibits recruitment of Stat3 on mesenchymal transcription factor Zeb1 promoter resulting in decreased Zeb1 expression and nuclear translocation. We also discover that HNK increases E‐cadherin expression via Stat3‐mediated release of Zeb1 from E‐cadherin promoter. Collectively, this study reports that HNK effectively inhibits EMT in breast cancer cells and provide evidence for a previously unrecognized cross‐talk between HNK and Stat3/Zeb1/E‐cadherin axis.


Oncotarget | 2016

SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis

Kaname Akamata; Jun Wei; Mitra Bhattacharyya; Paul Cheresh; Michael Y. Bonner; Jack L. Arbiser; Kirtee Raparia; Mahesh P. Gupta; David W. Kamp; John Varga

Constitutive fibroblast activation is responsible for organ fibrosis in fibrotic disorders including systemic sclerosis (SSc), but the underlying mechanisms are not fully understood, and effective therapies are lacking. We investigated the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and its modulation by hexafluoro, a novel fluorinated synthetic honokiol analogue, in the context of fibrosis. We find that augmenting cellular SIRT3 by forced expression in normal lung and skin fibroblasts, or by hexafluoro treatment, blocked intracellular TGF-ß signaling and fibrotic responses, and mitigated the activated phenotype of SSc fibroblasts. Moreover, hexafluoro attenuated mitochondrial and cytosolic reactive oxygen species (ROS) accumulation in TGF-β-treated fibroblasts. Remarkably, we found that the expression of SIRT3 was significantly reduced in SSc skin biopsies and explanted fibroblasts, and was suppressed by TGF-β treatment in normal fibroblasts. Moreover, tissue levels of acetylated MnSOD, a sensitive marker of reduced SIRT3 activity, were dramatically enhanced in lesional skin and lung biopsies from SSc patients. Mice treated with hexafluoro showed substantial attenuation of bleomycin-induced fibrosis in the lung and skin. Our findings reveal a cell-autonomous function for SIRT3 in modulating fibrotic responses, and demonstrate the ability of a novel pharmacological SIRT3 agonist to attenuate fibrosis in vitro and in vivo. In light of the impaired expression and activity of SIRT3 associated with organ fibrosis in SSc, pharmacological approaches for augmenting SIRT3 might have therapeutic potential.


PLOS ONE | 2014

Honokiol Enhances Paclitaxel Efficacy in Multi-Drug Resistant Human Cancer Model through the Induction of Apoptosis

Xu Wang; Jonathan J. Beitler; Hong Wang; Michael J. Lee; Wen Huang; Lydia Koenig; Sreenivas Nannapaneni; A.R.M. Ruhul Amin; Michael Y. Bonner; Hyung Ju C. Shin; Zhuo Georgia Chen; Jack L. Arbiser; Dong M. Shin

Resistance to chemotherapy remains a major obstacle in cancer therapy. This study aimed to evaluate the molecular mechanism and efficacy of honokiol in inducing apoptosis and enhancing paclitaxel chemotherapy in pre-clinical multi-drug resistant (MDR) cancer models, including lineage-derived human MDR (KB-8-5, KB-C1, KB-V1) and their parental drug sensitive KB-3-1 cancer cell lines. In vitro analyses demonstrated that honokiol effectively inhibited proliferation in KB-3-1 cells and the MDR derivatives (IC50 ranging 3.35±0.13 µg/ml to 2.77±0.22 µg/ml), despite their significant differences in response to paclitaxel (IC50 ranging 1.66±0.09 ng/ml to 6560.9±439.52 ng/ml). Honokiol induced mitochondria-dependent and death receptor-mediated apoptosis in MDR KB cells, which was associated with inhibition of EGFR-STAT3 signaling and downregulation of STAT3 target genes. Combined treatment with honokiol and paclitaxel synergistically augmented cytotoxicity in MDR KB cells, compared with treatment with either agent alone in vitro. Importantly, the combined treatment significantly inhibited in vivo growth of KB-8-5 tumors in a subcutaneous model. Tumor tissues from the combination group displayed a significant inhibition of Ki-67 expression and an increase in TUNEL-positive cells compared with the control group. These results suggest that targeting multidrug resistance using honokiol in combination with chemotherapy drugs may provide novel therapeutic opportunities.


Proceedings of the National Academy of Sciences of the United States of America | 2015

NADPH oxidase 4 is a critical mediator in Ataxia telangiectasia disease

Urbain Weyemi; Christophe E. Redon; Towqir Aziz; Rohini Choudhuri; Daisuke Maeda; Palak R. Parekh; Michael Y. Bonner; Jack L. Arbiser; William M. Bonner

Significance Ataxia telangiectasia (A-T) is a rare, autosomal recessive disorder characterized by progressive cerebellar degeneration. Oxidative stress is one cause of the symptoms of A-T disease. We report that inactivation of NADPH oxidase 4 (NOX4) reduced ROS, oxidative DNA damage, DNA double-strand breaks and replicative senescence in A-T primary cells. Analyses of A-T patients revealed elevated levels of NOX4 in the cerebellum that also correlated with increased levels of DNA damage and apoptosis. These observations were substantiated by the absence of abnormal NOX4 cerebellar expression in mouse models of A-T disease which do not display cerebellar degeneration. However, injecting A-T mice with NOX4 inhibitor decreased their elevated cancer incidence. Therefore, NOX4 appears as a critical mediator in A-T disease. Ataxia telangiectasia (A-T), a rare autosomal recessive disorder characterized by progressive cerebellar degeneration and a greatly increased incidence of cancer among other symptoms, is caused by a defective or missing ataxia telangiectasia mutated (ATM) gene. The ATM protein has roles in DNA repair and in the regulation of reactive oxygen species (ROS). Here, we provide, to our knowledge, the first evidence that NADPH oxidase 4 (NOX4) is involved in manifesting A-T disease. We showed that NOX4 expression levels are higher in A-T cells, and that ATM inhibition leads to increased NOX4 expression in normal cells. A-T cells exhibit elevated levels of oxidative DNA damage, DNA double-strand breaks and replicative senescence, all of which are partially abrogated by down-regulation of NOX4 with siRNA. Sections of degenerating cerebelli from A-T patients revealed elevated NOX4 levels. ATM-null mice exhibit A-T disease but they die from cancer before the neurological symptoms are manifested. Injecting Atm-null mice with fulvene-5, a specific inhibitor of NOX4 and NADPH oxidase 2 (NOX2), decreased their elevated cancer incidence to that of the controls. We conclude that, in A-T disease in humans and mice, NOX4 may be critical mediator and targeting it will open up new avenues for therapeutic intervention in neurodegeneration.

Collaboration


Dive into the Michael Y. Bonner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipali Sharma

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Adilson Costa

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer M. Munson

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge