Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Yermakov is active.

Publication


Featured researches published by Michael Yermakov.


Annals of Occupational Hygiene | 2011

Airborne Microorganisms, Endotoxin, and (1→3)-β-D-Glucan Exposure in Greenhouses and Assessment of Respiratory Symptoms Among Workers

Atin Adhikari; Jayanta Gupta; J. R. Wilkins; Rolanda Olds; Reshmi Indugula; Kyungmin Jacob Cho; Chunlei Li; Michael Yermakov

OBJECTIVES Greenhouse operations are an important sector of the horticulture industry, also known as the Green Industry. The objectives of this study were (i) to investigate exposure levels to airborne culturable fungi, bacteria (total culturable bacteria and actinomycetes), endotoxin, and (1→3)-β-D-glucan in three Midwest greenhouses during summer and winter using multiple exposure assessment methods; (ii) characterize the load of microorganisms on greenhouse floors and determine potential microbial source strengths of the floors for aerosolizing microbial biocontaminants, and (iii) to estimate the prevalence of rhinitis, wheezing, asthma, and other respiratory symptoms/conditions among greenhouse workers. METHODS Stationary inhalable aerosol samples were collected from each greenhouse using Button Inhalable Aerosol Samplers. Control samples were collected from offices and nearby outdoor locations. A microbial source strength tester was used to examine the aerosolization potential of microbial contaminants from greenhouse floors. Additionally, surface samples were collected by sterile cotton swabs. Temperature, relative humidity, and wind velocity were recorded. Airborne culturable fungi, bacteria, and actinomycetes were analyzed in the extracts from field samples by cultivation in nutrient agar media. Endotoxin and (1→3)-β-D-glucan in the extracts from field samples were analyzed by specific kinetic chromogenic Limulus amebocyte lysate assays. The prevalence of respiratory symptoms among greenhouse workers (n = 35) and control subjects (office workers; n = 14) was estimated with a standardized questionnaire. RESULTS AND CONCLUSIONS The collected data indicate that workers employed in Midwest greenhouses may be exposed to elevated levels of inhalable culturable microorganisms (fungi and bacteria collectively on the order of 10(2)-10(5) CFU m(-3)), endotoxin (10(1)-10(3) EU m(-3)), and (1→3)-β-D-glucan (10(1)-10(2) ng m(-3)). Seasonal variations were observed for some bioaerosol components. The prevalence of self-reported respiratory symptoms was generally higher among greenhouse workers compared to controls; however, the differences were not statistically significant, likely due to the relatively low statistical power of the study.


Environmental Science & Technology | 2012

Inactivation of Aerosolized Bacillus Atrophaeus (BG) Endospores and MS2 Viruses by Combustion of Reactive Materials

Sergey A. Grinshpun; Atin Adhikari; Michael Yermakov; Tiina Reponen; Edward L. Dreizin; Mirko Schoenitz; Vern K. Hoffmann; Shasha Zhang

Accidental release of biological agents from a bioweapon facility may contaminate large areas, possibly causing disastrous environmental consequences. To address this issue, novel halogen-containing reactive materials are being designed with the added capability to inactivate viable airborne microorganisms. This study determined the efficiency of combustion products of such materials to inactivate aerosolized bacteria and viruses. Spores of Bacillus atrophaeus and MS2 viruses dispersed in dry air were exposed for subsecond time intervals to hydrocarbon flames seeded with different reactive powders so that bioaerosol particles interacted with the combustion products in a controlled high-temperature environment. The experiments were designed to quantify differences in the biocidal effects of different reactive material powders including Al and Mg, a B•Ti nanocomposite, an 8Al•MoO(3) nanothermite, and a novel Al•I(2) nanocomposite. Compared to pure hydrocarbon flame, powder-seeded flame (with no iodine) produced about an order of magnitude greater inactivation of bacterial spores. The iodine-containing material increased the spore inactivation by additional 2 orders of magnitude. The aerosolized MS2 viruses (generally not as stress-resistant as spores) were fully inactivated when exposed to combustion of either the iodinated or noniodinated powders. Overall, the study suggests a great biocidal potential of combustion products generated by novel iodine-containing nanocomposite materials.


Journal of Occupational and Environmental Hygiene | 2013

Manikin-based performance evaluation of elastomeric respirators against combustion particles.

Xinjian He; Michael Yermakov; Tiina Reponen; Roy T. McKay; Kelley James; Sergey A. Grinshpun

This study investigated the effects of faceseal leakage, breathing flow, and combustion material on the overall (non-size-selective) penetration of combustion particles into P-100 half and full facepiece elastomeric respirators used by firefighters. Respirators were tested on a breathing manikin exposed to aerosols produced by combustion of three materials (wood, paper, and plastic) in a room-size exposure chamber. Testing was performed using a single constant flow (inspiratory flow rate = 30 L/min) and three cyclic flows (mean inspiratory flow rates = 30, 85, and 135 L/min). Four sealing conditions (unsealed, nose-only sealed, nose and chin sealed, and fully sealed) were examined to evaluate the respirator faceseal leakage. Total aerosol concentration was measured inside (Cin) and outside (Cout) the respirator using a condensation particle counter. The total penetration through the respirator was determined as a ratio of the two (P = Cin / Cout). Faceseal leakage, breathing flow type and rate, and combustion material were all significant factors affecting the performance of the half mask and full facepiece respirators. The efficiency of P-100 respirator filters met the NIOSH certification criteria (penetration ≤0.03%); it was not significantly influenced by the challenge aerosol and flow type, which supports the current NIOSH testing procedure using a single challenge aerosol and a constant airflow. However, contrary to the NIOSH total inward leakage (TIL) test protocol assuming that the result is independent on the type of the tested aerosol, this study revealed that the challenge aerosol significantly affects the particle penetration through unsealed and partially sealed half mask respirators. Increasing leak size increased total particle penetration. The findings point to some limitations of the existing TIL test in predicting protection levels offered by half mask elastomeric respirators.


Aerosol Science and Technology | 2010

Inactivation of Aerosolized Viruses in Continuous Air Flow with Axial Heating

Sergey A. Grinshpun; Atin Adhikari; Chunlei Li; Michael Yermakov; Lauri Reponen; Elisabet Johansson; Mikhaylo Trunov

Thermal inactivation of viruses has been studied in relevance to food sterilization, water purification, and other “non-aerosol” applications, in which heat treatment is applied for a relatively long time. No data are available on the inactivation of airborne viruses exposed to dry heat for a short time, although this is relevant to bio-defense and indoor air quality control. In this study, we investigated inactivation of aerosolized MS2 viruses in a continuous air flow chamber with axial heating resulted from exposures during ∼ 0.1–1 s. For an airborne virion, the characteristic exposure temperature, T e , was defined utilizing the air temperature profiles in the chamber. The tests were conducted at two air flow rates, Q, which allowed for establishing different thermal flow regimes and exposure time intervals. The experimentally determined inactivation factor, IF, was subjected to correction to account for the temperature profiles. At T e up to ∼ 90°C (Q = 18 L/min) and up to ∼ 140°C (Q = 36 L/min), the loss of viral infectivity was relatively modest (≤ 10). However, IF increased exponentially as T e rose from ∼ 90°C to ∼ 160°C (for 18 L/min) or from ∼ 140°C to ∼ 230°C (for 36 L/min). Under specific thermal exposure conditions (∼ 170°C and ∼ 250°C, respectively), IF exceeded ∼ 2.4 × 104 (∼ 99.996% infectivity loss)—the maximum quantifiable in this study. The airborne MS2 virions exposed to hot air for < 1 s were found to have survived much higher temperatures than those subjected to thermal treatment in liquid for minutes or hours. The findings are significant for establishing limitations of the heat-based bioaerosol control methods.


Annals of Occupational Hygiene | 2013

Laboratory Evaluation of the Particle Size Effect on the Performance of an Elastomeric Half-mask Respirator against Ultrafine Combustion Particles

Xinjian He; Sergey A. Grinshpun; Tiina Reponen; Michael Yermakov; Roy T. McKay; Hiroki Haruta; Kazushi Kimura

OBJECTIVES This study quantified the particle size effect on the performance of elastomeric half-mask respirators, which are widely used by firefighters and first responders exposed to combustion aerosols. METHODS One type of elastomeric half-mask respirator equipped with two P-100 filters was donned on a breathing manikin while challenged with three combustion aerosols (originated by burning wood, paper, and plastic). Testing was conducted with respirators that were fully sealed, partially sealed (nose area only), or unsealed to the face of a breathing manikin to simulate different faceseal leakages. Three cyclic flows with mean inspiratory flow (MIF) rates of 30, 85, and 135 L/min were tested for each combination of sealing condition and combustion material. Additional testing was performed with plastic combustion particles at other cyclic and constant flows. Particle penetration was determined by measuring particle number concentrations inside and outside the respirator with size ranges from 20 to 200 nm. RESULTS Breathing flow rate, particle size, and combustion material all had significant effects on the performance of the respirator. For the partially sealed and unsealed respirators, the penetration through the faceseal leakage reached maximum at particle sizes >100 nm when challenged with plastic aerosol, whereas no clear peaks were observed for wood and paper aerosols. The particles aerosolized by burning plastic penetrated more readily into the unsealed half-mask than those aerosolized by the combustion of wood and paper. The difference may be attributed to the fact that plastic combustion particles differ from wood and paper particles by physical characteristics such as charge, shape, and density. For the partially sealed respirator, the highest penetration values were obtained at MIF = 85 L/min. The unsealed respirator had approximately 10-fold greater penetration than the one partially sealed around the bridge of the nose, which indicates that the nose area was the primary leak site.


Aerosol Science and Technology | 2011

Association Between Increased DNA Mutational Frequency and Thermal Inactivation of Aerosolized Bacillus Spores Exposed to Dry Heat

Elisabet Johansson; Atin Adhikari; Tiina Reponen; Michael Yermakov; Sergey A. Grinshpun

Inactivation of viable bioaerosol particles, especially stress-resistant microorganisms, has important implications for biodefense and air quality control. It has earlier been shown that the loss of viability of bacterial endospores due to exposure to dry heat is associated with mutational damage. Previous studies, however, used non-aerosolized spores, long exposure times, and moderately elevated temperatures. This study was designed to investigate the mechanism of inactivation of aerosolized Bacillus endospores exposed to high temperatures for sub-second time periods. Bioaerosol was tested in a continuous air flow chamber under two flow rates, 18 L/min and 36 L/min. The chamber had a cylindrical electric heating element installed along its axis. The estimated characteristic exposure temperature (Texposure ) ranged from 164°C to 277°C (with an uncertainty of 21–26°C). To quantify mutational frequency, spores were cultivated after dry heat exposure on tryptic-soy agar and on antibiotic nalidixic acid media. Increases in the exposure temperature caused viability loss and increase in mutational frequency of the spore DNA. Significant association was found between the inactivation factor and the mutational frequency ratio (heat exposed versus non-exposed) with R2 of 0.985 for both flow rates combined. The results suggest that mutational damage is involved in the causal chain of events leading to inactivation of aerosolized endospores exposed to heat for sub-second time periods.


Combustion Science and Technology | 2016

Preparation, Ignition, and Combustion of Mg·S Reactive Nanocomposites

Ani Abraham; Ziyue Zhong; Ruodong Liu; Sergey A. Grinshpun; Michael Yermakov; Reshmi Indugula; Mirko Schoenitz; Edward L. Dreizin

ABSTRACT Elemental magnesium and sulfur powders were ball milled to prepare a nanocomposite material, Mg·S. Ignition of the prepared powder was characterized using both a heated filament experiment and electric spark. Combustion of individual particles was studied by injecting the powder into a premixed hydrocarbon-air flame. Combustion of powder clouds was examined using a constant volume explosion chamber. Biocidal effect of the produced combustion products against aerosolized endospores of Bacillus thuringiensis (simulant of Bacillus anthracis) was quantified. The powders ignited at lower temperatures, compared to pure magnesium. Delayed ignition was observed for powders initiated by spark and for powder clouds ignited in a constant volume chamber by a heated wire. The delay is likely due to the formation of an evaporated sulfur cloud preceding ignition. The composite material burned faster than pure magnesium, which was shown by shorter measured burn times for individual particles, and by higher rates of pressure rise in the constant volume explosion experiments. The optical emission spectra produced by burning Mg·S nanocomposite powders exhibited an unusually strong emission at short wavelengths; additional spectroscopic studies of such flames are of interest. Combustion products generated by Mg·S composite powders effectively inactivated aerosolized spores; the effectiveness of inactivation was comparable to some previously examined formulations, including aluminum-based composite powders containing iodine.


Annals of Occupational Hygiene | 2016

Performance of Facepiece Respirators and Surgical Masks Against Surgical Smoke: Simulated Workplace Protection Factor Study

Shuang Gao; Richard H. Koehler; Michael Yermakov; Sergey A. Grinshpun

Abstract Objective: Surgical smoke generated during electrocautery contains toxins which may cause adverse health effects to operating room (OR) personnel. The objective of this study was to investigate the performance of surgical masks (SMs), which are routinely used in ORs, more efficient N95 surgical mask respirator (SMRs) and N100 filtering facepiece respirator (FFRs), against surgical smoke. Methods: Ten subjects were recruited to perform surgical dissections on animal tissue in a simulated OR chamber, using a standard electrocautery device, generating surgical smoke. Six respiratory protective devices (RPDs) were tested: two SMs, two SMRs, and two N100 FFRs [including a newly developed faceseal (FS) prototype]. Fit testing was conducted before the experiment. Each subject was then exposed to the surgical smoke while wearing an RPD under the tests. Concentrations inside (Cin) and outside (Cout) of the RPD were measured by a particle size spectrometer. The simulated workplace protection factor (SWPF) was determined by the ratio of Cout and Cin for each RPD-wearing subject. Results: For the SMs, the geometric means of SWPFtotal (based on the total aerosol concentration) were 1.49 and 1.76, indicating minimal protection. The SWPFtotal values of the SMRs and N100 FFRs were significantly higher than those of the SMs: for the two SMRs, the SWPFtotal were 208 and 263; for the two N100s, the SWPFtotal values were 1,089 and 2,199. No significant difference was observed between either the two SMs or the two SMRs. The SWPFtotal for the novel FS prototype N100 FFR was significantly higher than the conventional N100 FFR. The correlation between SWPFtotal and fit factor (FF) determined for two N95 SMRs was not significant. Conclusions: SMs do not provide measurable protection against surgical smoke. SMRs offer considerably improved protection versus SMs, while the N100 FFRs showed significant improvement over the SMRs. The FS prototype offered a higher level of protection than the standard N100 FFR, due to a tighter seal. While we acknowledge that conventional N100 FFRs (equipped with exhalation valves) are not practical for human OR use, the results obtained with the FS prototype demonstrate the potential of the new FS technology for implementation on various types of respirators.


Journal of Occupational and Environmental Hygiene | 2015

Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs)

Shuang Gao; Jinyong Kim; Michael Yermakov; Yousef Elmashae; Xinjian He; Tiina Reponen; Sergey A. Grinshpun

Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the “model” NaCl particles (p < 0.05), raising a concern about applicability of the N95 filters performance obtained with the NaCl aerosol challenge to protection against combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p < 0.05) factors affecting the performance of the N95 FFR filter. In contrast to N95 filters, the penetration of combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving “oily” particles. The findings of this study suggest that the efficiency of N95 respirator filters obtained with the NaCl aerosol challenge may not accurately predict (and rather overestimate) the filter efficiency against combustion particles.


Aerosol Science and Technology | 2017

Aluminum-based materials for inactivation of aerosolized spores of Bacillus anthracis surrogates

Sergey A. Grinshpun; Michael Yermakov; Reshmi Indugula; Ani Abraham; Mirko Schoenitz; Edward L. Dreizin

ABSTRACT Energetic materials generating biocidal combustion products to disable airborne pathogenic microorganisms (including bio-threat agents) were designed as compounds of halogens and metals with high heats of oxidation. Thermally stable Al-based powders containing iodine and chlorine were prepared using ball-milling at room and cryogenic temperatures. Such powders can replace pure aluminum in metallized energetic formulations. Their stability and halogen release were quantified using thermo-gravimetric analysis. Ignition temperatures were determined by coating prepared powders onto an electrically heated filament. All prepared composites had lower ignition temperatures and longer combustion times compared to pure Al. In separate experiments, combustion products generated by injecting the prepared powders into an air-acetylene flame were mixed with a well-characterized bioaerosol. Inactivation of viable bioaerosol particles exposed to the heated combustion products for a short period of time (estimated to be 0.33 s) was quantified. The combustion products of materials investigated in this study effectively inactivated the aerosolized spores of two tested surrogates of Bacillus anthracis (B. atrophaeus and B. thuringiensis var kurstaki). A ternary composite with 20 wt% of iodine, 40 wt% of aluminum and 40 wt% of boron was found to be most attractive based on both its stability and efficiency in inactivating the aerosolized spores. The inactivation achieved was primarily attributed to chemical stresses as the thermal effect could not solely produce the high measured levels of inactivation. The findings point to a possible synergy of the thermal and chemical spore inactivation mechanisms.

Collaboration


Dive into the Michael Yermakov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiina Reponen

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Atin Adhikari

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Edward L. Dreizin

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mirko Schoenitz

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinjian He

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Vern K. Hoffmann

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge