Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michaela Eder is active.

Publication


Featured researches published by Michaela Eder.


Plant Journal | 2008

Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer

Luna Goswami; John W. C. Dunlop; Karin Jungnikl; Michaela Eder; Notburga Gierlinger; Catherine Coutand; G. Jeronimidis; Peter Fratzl; Ingo Burgert

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.


Planta | 2007

Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell

Ingo Burgert; Michaela Eder; Notburga Gierlinger; Peter Fratzl

Plants are able to pre-stress their tissues in order to actuate their organs. Here, we demonstrate with two tissue types of the secondary xylem of conifers (normal wood and compression wood of spruce (Picea abies)) that either tensile or compressive stresses can develop in the longitudinal direction during the swelling of the cell wall. This dramatic difference appears to be due mostly to differences in cell geometry and cellulose fibril orientation. A mechanical model was developed to demonstrate swelling experiments with the help of sodium iodide experiments. The reversal of longitudinal extension can be predicted, based on the orientation of the (nearly inextensible) cellulose fibrils and the shape of the cell.


Journal of Experimental Botany | 2010

Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging

Notburga Gierlinger; Saskia Luss; Christian König; Johannes Konnerth; Michaela Eder; Peter Fratzl

The functional characteristics of plant cell walls depend on the composition of the cell wall polymers, as well as on their highly ordered architecture at scales from a few nanometres to several microns. Raman spectra of wood acquired with linear polarized laser light include information about polymer composition as well as the alignment of cellulose microfibrils with respect to the fibre axis (microfibril angle). By changing the laser polarization direction in 3° steps, the dependency between cellulose and laser orientation direction was investigated. Orientation-dependent changes of band height ratios and spectra were described by quadratic linear regression and partial least square regressions, respectively. Using the models and regressions with high coefficients of determination (R2 > 0.99) microfibril orientation was predicted in the S1 and S2 layers distinguished by the Raman imaging approach in cross-sections of spruce normal, opposite, and compression wood. The determined microfibril angle (MFA) in the different S2 layers ranged from 0° to 49.9° and was in coincidence with X-ray diffraction determination. With the prerequisite of geometric sample and laser alignment, exact MFA prediction can complete the picture of the chemical cell wall design gained by the Raman imaging approach at the micron level in all plant tissues.


Wood Science and Technology | 2013

Experimental micromechanical characterisation of wood cell walls

Michaela Eder; Olivier Arnould; John W. C. Dunlop; Joanna Hornatowska; Lennart Salmén

The properties of wood and wood-based materials are strongly dependent on the properties of the fibres, that is, the cell wall properties. It is thus highly important to be able to mechanically characterise cell walls in order to understand structure–property relationships. This article gives a brief overview of the state of the art in experimental techniques to characterise the mechanical properties of wood at both the level of the single cell and that of the cell wall. Challenges, opportunities, drawbacks and limitations of single fibre tensile tests and nanoindentation are discussed with respect to the wood material properties.


Frontiers in Plant Science | 2011

Large-Scale Co-Expression Approach to Dissect Secondary Cell Wall Formation Across Plant Species

Colin Ruprecht; Marek Mutwil; Friederike Saxe; Michaela Eder; Zoran Nikoloski; Staffan Persson

Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.


Biomacromolecules | 2012

Reorientation of Cellulose Nanowhiskers in Agarose Hydrogels under Tensile Loading

Anayancy Osorio-Madrazo; Michaela Eder; Markus Rueggeberg; Jitendra Kumar Pandey; Matthew J. Harrington; Yoshiharu Nishiyama; Jean-Luc Putaux; Cyrille Rochas; Ingo Burgert

Agarose hydrogels filled with cellulose nanowhiskers were strained in uniaxial stretching under different humidity conditions. The orientation of the cellulose whiskers was examined before and after testing with an X-ray laboratory source and monitored in situ during loading by synchrotron X-ray diffraction. The aim of this approach was to determine the process parameters for reorienting the cellulose nanowhiskers toward a preferential direction. Results show that a controlled drying of the hydrogel is essential to establish interactions between the matrix and the cellulose nanowhiskers which allow for a stress transfer during stretching and thereby promote their alignment. Rewetting of the sample after reorientation of the cellulose nanowhiskers circumvents a critical increase of stress. This improves the extensibility of the hydrogel and is accompanied by a further moderate alignment of the cellulose nanowhiskers. Following this protocol, cellulose nanowhiskers with an initial random distribution can be reoriented toward a preferential direction, creating anisotropic nanocomposites.


Applied Physics Letters | 2007

One-step electrospun nanofiber-based composite ropes

Lu-Qi Liu; Michaela Eder; Ingo Burgert; Dimitrios Tasis; Maurizio Prato; H. Daniel Wagner

A one-step procedure to assemble nanoscale electrospun poly(methylmetacrylate) (PMMA) and multiwall carbon nanotube (MWCNT) reinforced PMMA fibers into twisted continuous ropes is presented. A post-treatment procedure following rope assembly is essential to maximize the mechanical properties of the ropes. A comparison between the mechanical properties of the individual nanoscale fibers and microscale ropes reveals that rope strength variability is advantageously smaller than single fiber strength variability, but also that the average rope strength is smaller than the single fiber strength. The incorporation of MWCNTs in PMMA ropes often leads to a significant increase in failure strain and toughness.


Trees-structure and Function | 2009

A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.)

Michaela Eder; Karin Jungnikl; Ingo Burgert

A growth ring of an adult Norway spruce (Picea abies [L] Karst.) was analyzed to a high resolution at the single cell level with respect to structural and mechanical changes during the growth period. For this purpose structural characterization was performed by means of light microscopy, scanning electron microscopy and wide angle X-ray diffraction for investigating the geometry of cells, their cell wall fractions and cellulose microfibril angles (MFA). The mechanical properties were determined in microtensile tests on individual tracheids which had been taken from sequentially cut tangential slices. The results revealed pronounced differences in tensile stiffness between earlywood and latewood cells but only minor differences in tensile stiffness between the cell walls of both tissue types. These comparatively small changes in cell wall stiffness across the growth ring were caused by slight changes in MFA. The findings suggest that trees mainly vary cell size to optimize water transport and mechanical stability during the growth period and that modification of the cell wall organisation plays a minor role.


Molecular Plant | 2009

Pectin May Hinder the Unfolding of Xyloglucan Chains during Cell Deformation: Implications of the Mechanical Performance of Arabidopsis Hypocotyls with Pectin Alterations

Willie Abasolo; Michaela Eder; Kazuchika Yamauchi; Nicolai Obel; Antje Reinecke; Lutz Neumetzler; John W. C. Dunlop; Grégory Mouille; Markus Pauly; Herman Höfte; Ingo Burgert

Plant cell walls, like a multitude of other biological materials, are natural fiber-reinforced composite materials. Their mechanical properties are highly dependent on the interplay of the stiff fibrous phase and the soft matrix phase and on the matrix deformation itself. Using specific Arabidopsis thaliana mutants, we studied the mechanical role of the matrix assembly in primary cell walls of hypocotyls with altered xyloglucan and pectin composition. Standard microtensile tests and cyclic loading protocols were performed on mur1 hypocotyls with affected RGII borate diester cross-links and a hindered xyloglucan fucosylation as well as qua2 exhibiting 50% less homogalacturonan in comparison to wild-type. As a control, wild-type plants (Col-0) and mur2 exhibiting a specific xyloglucan fucosylation and no differences in the pectin network were utilized. In the standard tensile tests, the ultimate stress levels (approximately tensile strength) of the hypocotyls of the mutants with pectin alterations (mur1, qua2) were rather unaffected, whereas their tensile stiffness was noticeably reduced in comparison to Col-0. The cyclic loading tests indicated a stiffening of all hypocotyls after the first cycle and a plastic deformation during the first straining, the degree of which, however, was much higher for mur1 and qua2 hypocotyls. Based on the mechanical data and current cell wall models, it is assumed that folded xyloglucan chains between cellulose fibrils may tend to unfold during straining of the hypocotyls. This response is probably hindered by geometrical constraints due to pectin rigidity.


Wood Science and Technology | 2008

The fracture behaviour of single wood fibres is governed by geometrical constraints: in situ ESEM studies on three fibre types

Michaela Eder; Stefanie E. Stanzl-Tschegg; Ingo Burgert

In situ tensile tests were performed in an environmental scanning electron microscope (ESEM) on earlywood, transition wood and latewood cells of Norway spruce (Picea abies [L.] Karst.). In order to examine the single wood fibres in a wet state, a specially designed tensile testing stage with a cooling device was built. The fracture behaviour of the cell types was studied at high resolution while straining. Different failure mechanisms were observed for the three tissue types. The thin-walled earlywood fibres showed tension buckling which gave rise to crack initiation and resulted in low tensile strength, whereas thick-walled latewood fibres predominately failed by transverse crack propagation without fibre folding.

Collaboration


Dive into the Michaela Eder's collaboration.

Top Co-Authors

Avatar

Ingo Burgert

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Neinhuis

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben P. Miller

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David J. Merritt

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Nico Bruns

University of Fribourg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge