Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michaela Fenckova is active.

Publication


Featured researches published by Michaela Fenckova.


American Journal of Human Genetics | 2012

Disruption of an EHMT1-Associated Chromatin-Modification Module Causes Intellectual Disability

Tjitske Kleefstra; Jamie M. Kramer; Kornelia Neveling; Marjolein H. Willemsen; Tom S. Koemans; Lisenka E.L.M. Vissers; Willemijn Wissink-Lindhout; Michaela Fenckova; Willem M.R. van den Akker; Nael Nadif Kasri; Willy M. Nillesen; Trine Prescott; Robin D. Clark; Koenraad Devriendt; Jeroen van Reeuwijk; Arjan P.M. de Brouwer; Christian Gilissen; Huiqing Zhou; Han G. Brunner; Joris A. Veltman; Annette Schenck; Hans van Bokhoven

Intellectual disability (ID) disorders are genetically and phenotypically highly heterogeneous and present a major challenge in clinical genetics and medicine. Although many genes involved in ID have been identified, the etiology is unknown in most affected individuals. Moreover, the function of most genes associated with ID remains poorly characterized. Evidence is accumulating that the control of gene transcription through epigenetic modification of chromatin structure in neurons has an important role in cognitive processes and in the etiology of ID. However, our understanding of the key molecular players and mechanisms in this process is highly fragmentary. Here, we identify a chromatin-modification module that underlies a recognizable form of ID, the Kleefstra syndrome phenotypic spectrum (KSS). In a cohort of KSS individuals without mutations in EHMT1 (the only gene known to be disrupted in KSS until now), we identified de novo mutations in four genes, MBD5, MLL3, SMARCB1, and NR1I3, all of which encode epigenetic regulators. Using Drosophila, we demonstrate that MBD5, MLL3, and NR1I3 cooperate with EHMT1, whereas SMARCB1 is known to directly interact with MLL3. We propose a highly conserved epigenetic network that underlies cognition in health and disease. This network should allow the design of strategies to treat the growing group of ID pathologies that are caused by epigenetic defects.


Nature Genetics | 2017

Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases

Holly A.F. Stessman; Bo Xiong; Bradley P. Coe; Tianyun Wang; Kendra Hoekzema; Michaela Fenckova; Malin Kvarnung; Jennifer Gerdts; Sandy Trinh; Nele Cosemans; Laura Vives; Janice Lin; Tychele N. Turner; Gijs W.E. Santen; Claudia Ruivenkamp; Marjolein Kriek; Arie van Haeringen; Emmelien Aten; Kathryn Friend; Jan Liebelt; Christopher Barnett; Eric Haan; Marie Shaw; Jozef Gecz; Britt Marie Anderlid; Ann Nordgren; Anna Lindstrand; Charles E. Schwartz; R. Frank Kooy; Geert Vandeweyer

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


American Journal of Human Genetics | 2016

Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules.

Korinna Kochinke; Christiane Zweier; Bonnie Nijhof; Michaela Fenckova; Pavel Cizek; Frank Honti; Shivakumar Keerthikumar; Merel A.W. Oortveld; Tjitske Kleefstra; Jamie M. Kramer; Caleb Webber; Martijn A. Huynen; Annette Schenck

Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.


Frontiers in Neuroscience | 2014

Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders.

Amit Lotan; Michaela Fenckova; Janita Bralten; Aet Alttoa; Luanna Dixson; Robert W. Williams; Monique van der Voet

Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders—attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10−5). 22% of genes overlapped two or more disorders. The most widely shared subset of genes—common to five of six disorders–included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20–30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.


Journal of Medical Genetics | 2013

GATAD2B loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth in Drosophila

Marjolein H. Willemsen; Bonnie Nijhof; Michaela Fenckova; Willy M. Nillesen; Ernie M.H.F. Bongers; Anna Castells-Nobau; Lenke Asztalos; Erika Virágh; B.W.M. van Bon; E. Tezel; Joris A. Veltman; Han G. Brunner; L.B.A. de Vries; J. de Ligt; Helger G. Yntema; H. van Bokhoven; Bertrand Isidor; C Le Caignec; E. Lorino; Z. Asztalos; David A. Koolen; Lisenka E.L.M. Vissers; Annette Schenck; Tjitske Kleefstra

Background GATA zinc finger domain containing 2B (GATAD2B) encodes a subunit of the MeCP1-Mi-2/nucleosome remodelling and deacetylase complex involved in chromatin modification and regulation of transcription. We recently identified two de novo loss-of-function mutations in GATAD2B by whole exome sequencing in two unrelated individuals with severe intellectual disability. Methods To identify additional individuals with GATAD2B aberrations, we searched for microdeletions overlapping with GATAD2B in inhouse and international databases, and performed targeted Sanger sequencing of the GATAD2B locus in a selected cohort of 80 individuals based on an overlap with the clinical features in the two index cases. To address whether GATAD2B is required directly in neurones for cognition and neuronal development, we investigated the role of Drosophila GATAD2B orthologue simjang (simj) in learning and synaptic connectivity. Results We identified a third individual with a 240 kb microdeletion encompassing GATAD2B and a fourth unrelated individual with GATAD2B loss-of-function mutation. Detailed clinical description showed that all four individuals with a GATAD2B aberration had a distinctive phenotype with childhood hypotonia, severe intellectual disability, limited speech, tubular shaped nose with broad nasal tip, short philtrum, sparse hair and strabismus. Neuronal knockdown of Drosophila GATAD2B orthologue, simj, resulted in impaired learning and altered synapse morphology. Conclusions We hereby define a novel clinically recognisable intellectual disability syndrome caused by loss-of-function of GATAD2B. Our results in Drosophila suggest that GATAD2B is required directly in neurones for normal cognitive performance and synapse development.


American Journal of Human Genetics | 2016

Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders

Holly A.F. Stessman; Marjolein H. Willemsen; Michaela Fenckova; Osnat Penn; Alexander Hoischen; Bo Xiong; Tianyun Wang; Kendra Hoekzema; Laura Vives; Ida Vogel; Han G. Brunner; Ineke van der Burgt; Charlotte W. Ockeloen; Janneke H M Schuurs-Hoeijmakers; Jolien S. Klein Wassink-Ruiter; Connie Stumpel; Servi J.C. Stevens; Hans S.H. Vles; Carlo M. Marcelis; Hans van Bokhoven; Vincent Cantagrel; Laurence Colleaux; Michael Nicouleau; Stanislas Lyonnet; Raphael Bernier; Jennifer Gerdts; Bradley P. Coe; Corrado Romano; Antonino Alberti; Lucia Grillo

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Human Molecular Genetics | 2013

CEP89 is required for mitochondrial metabolism and neuronal function in man and fly

Bregje W.M. van Bon; Merel A.W. Oortveld; Leo Nijtmans; Michaela Fenckova; Bonnie Nijhof; Judith Besseling; Melissa Vos; Jamie M. Kramer; Nicole de Leeuw; Anna Castells-Nobau; Lenke Asztalos; Erika Virágh; Mariken Ruiter; Falko Hofmann; Lillian Eshuis; Licio Collavin; Martijn A. Huynen; Zoltan Asztalos; Patrik Verstreken; Richard J. Rodenburg; Jan A.M. Smeitink; Bert B.A. de Vries; Annette Schenck

It is estimated that the human mitochondrial proteome consists of 1000-1500 distinct proteins. The majority of these support the various biochemical pathways that are active in these organelles. Individuals with an oxidative phosphorylation disorder of unknown cause provide a unique opportunity to identify novel genes implicated in mitochondrial biology. We identified a homozygous deletion of CEP89 in a patient with isolated complex IV deficiency, intellectual disability and multisystemic problems. CEP89 is a ubiquitously expressed and highly conserved gene of unknown function. Immunocytochemistry and cellular fractionation experiments showed that CEP89 is present both in the cytosol and in the mitochondrial intermembrane space. Furthermore, we ascertained in vitro that downregulation of CEP89 resulted in a severe decrease in complex IV in-gel activity and altered mobility, suggesting that the complex is aberrantly formed. Two-dimensional BN-SDS gel analysis revealed that CEP89 associates with a high-molecular weight complex. Together, these data confirm a role for CEP89 in mitochondrial metabolism. In addition, we modeled CEP89 loss of function in Drosophila. Ubiquitous knockdown of fly Cep89 decreased complex IV activity and resulted in complete lethality. Furthermore, Cep89 is required for mitochondrial integrity, membrane depolarization and synaptic transmission of photoreceptor neurons, and for (sub)synaptic organization of the larval neuromuscular junction. Finally, we tested neuronal Cep89 knockdown flies in the light-off jump reflex habituation assay, which revealed its role in learning. We conclude that CEP89 proteins play an important role in mitochondrial metabolism, especially complex IV activity, and are required for neuronal and cognitive function across evolution.


PLOS Genetics | 2017

Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder

Tom S. Koemans; Tjitske Kleefstra; Melissa C. Chubak; Max H. Stone; Margot R.F. Reijnders; Sonja de Munnik; Marjolein H. Willemsen; Michaela Fenckova; Connie Stumpel; Levinus A. Bok; Margarita Sifuentes Saenz; Kyna A. Byerly; Linda B. Baughn; Alexander P.A. Stegmann; Rolph Pfundt; Huiqing Zhou; Hans van Bokhoven; Annette Schenck; Jamie M. Kramer

Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1), is characterized by intellectual disability (ID), autism spectrum disorder (ASD), characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C), in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C. Our clinical data delineates the KMT2C phenotypic spectrum and reinforces the phenotypic overlap with Kleefstra syndrome and other related ID disorders. To elucidate the common molecular basis of the neuropathology associated with mutations in KMT2C and EHMT1, we characterized the role of the Drosophila KMT2C ortholog, trithorax related (trr), in the nervous system. Similar to the Drosophila EHMT1 ortholog, G9a, trr is required in the mushroom body for short term memory. Trr ChIP-seq identified 3371 binding sites, mainly in the promoter of genes involved in neuronal processes. Transcriptional profiling of pan-neuronal trr knockdown and G9a null mutant fly heads identified 613 and 1123 misregulated genes, respectively. These gene sets show a significant overlap and are associated with nearly identical gene ontology enrichments. The majority of the observed biological convergence is derived from predicted indirect target genes. However, trr and G9a also have common direct targets, including the Drosophila ortholog of Arc (Arc1), a key regulator of synaptic plasticity. Our data highlight the clinical and molecular convergence between the KMT2 and EHMT protein families, which may contribute to a molecular network underlying a larger group of ID/ASD-related disorders.


European Journal of Human Genetics | 2016

De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila

Dorien Lugtenberg; Margot R.F. Reijnders; Michaela Fenckova; Emilia K. Bijlsma; Raphael Bernier; Bregje W.M. van Bon; Eric Smeets; Anneke T. Vulto-van Silfhout; Daniëlle G.M. Bosch; Evan E. Eichler; Mefford Hc; Gemma L. Carvill; Ernie M.H.F. Bongers; Janneke H M Schuurs-Hoeijmakers; Claudia Ruivenkamp; Gijs W.E. Santen; Arn M. J. M. van den Maagdenberg; Cacha Peeters-Scholte; Sabine Kuenen; Patrik Verstreken; Rolph Pfundt; Helger G. Yntema; Petra de Vries; Joris A. Veltman; Alexander Hoischen; Christian Gilissen; Bert B.A. de Vries; Annette Schenck; Tjitske Kleefstra; Lisenka E.L.M. Vissers

Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.


PLOS Genetics | 2016

BOD1 Is Required for Cognitive Function in Humans and Drosophila.

Sahar Esmaeeli-Nieh; Michaela Fenckova; Iain M. Porter; M. Mahdi Motazacker; Bonnie Nijhof; Anna Castells-Nobau; Zoltan Asztalos; Robert Weißmann; Farkhondeh Behjati; Andreas Tzschach; Ute Felbor; Harry Scherthan; Seyed Morteza Sayfati; Hans-Hilger Ropers; Kimia Kahrizi; Hossein Najmabadi; Jason R. Swedlow; Annette Schenck; Andreas W. Kuss

Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features.

Collaboration


Dive into the Michaela Fenckova's collaboration.

Top Co-Authors

Avatar

Annette Schenck

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Tjitske Kleefstra

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Bonnie Nijhof

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jamie M. Kramer

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Hans van Bokhoven

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Joris A. Veltman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge