Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michaela Fontenay is active.

Publication


Featured researches published by Michaela Fontenay.


The New England Journal of Medicine | 2009

Mutation in TET2 in Myeloid Cancers

François Delhommeau; Sabrina Dupont; Véronique Della Valle; Chloe James; Severine Trannoy; Aline Masse; Olivier Kosmider; Jean-Pierre Le Couedic; Fabienne Robert; Antonio Alberdi; Yann Lécluse; Isabelle Plo; Francois Dreyfus; Christophe Marzac; Nicole Casadevall; Catherine Lacombe; Serge Romana; Philippe Dessen; Jean Soulier; Franck Viguié; Michaela Fontenay; William Vainchenker; Olivier Bernard

BACKGROUND The myelodysplastic syndromes and myeloproliferative disorders are associated with deregulated production of myeloid cells. The mechanisms underlying these disorders are not well defined. METHODS We conducted a combination of molecular, cytogenetic, comparative-genomic-hybridization, and single-nucleotide-polymorphism analyses to identify a candidate tumor-suppressor gene common to patients with myelodysplastic syndromes, myeloproliferative disorders, and acute myeloid leukemia (AML). The coding sequence of this gene, TET2, was determined in 320 patients. We analyzed the consequences of deletions or mutations in TET2 with the use of in vitro clonal assays and transplantation of human tumor cells into mice. RESULTS We initially identified deletions or mutations in TET2 in three patients with myelodysplastic syndromes, in three of five patients with myeloproliferative disorders, in two patients with primary AML, and in one patient with secondary AML. We selected the six patients with myelodysplastic syndromes or AML because they carried acquired rearrangements on chromosome 4q24; we selected the five patients with myeloproliferative disorders because they carried a dominant clone in hematopoietic progenitor cells that was positive for the V617F mutation in the Janus kinase 2 (JAK2) gene. TET2 defects were observed in 15 of 81 patients with myelodysplastic syndromes (19%), in 24 of 198 patients with myeloproliferative disorders (12%) (with or without the JAK2 V617F mutation), in 5 of 21 patients with secondary AML (24%), and in 2 of 9 patients with chronic myelomonocytic leukemia (22%). TET2 defects were present in hematopoietic stem cells and preceded the JAK2 V617F mutation in the five samples from patients with myeloproliferative disorders that we analyzed. CONCLUSIONS Somatic mutations in TET2 occur in about 15% of patients with various myeloid cancers.


Cancer Cell | 2011

TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and Is a Recurrent Event during Human Lymphomagenesis

Cyril Quivoron; Lucile Couronné; Véronique Della Valle; Cécile K. Lopez; Isabelle Plo; Orianne Wagner-Ballon; Marcio Do Cruzeiro; François Delhommeau; Bertrand Arnulf; Marc-Henri Stern; Lucy A. Godley; Paule Opolon; Hervé Tilly; Eric Solary; Yannis Duffourd; Philippe Dessen; Hélène Merle-Béral; Michaela Fontenay; William Vainchenker; Christian Bastard; Thomas Mercher; Olivier Bernard

Loss-of-function mutations affecting one or both copies of the Ten-Eleven-translocation (TET)2 gene have been described in various human myeloid malignancies. We report that inactivation of Tet2 in mouse perturbs both early and late steps of hematopoiesis including myeloid and lymphoid differentiation in a cell-autonomous manner, endows the cells with competitive advantage, and eventually leads to the development of malignancies. We subsequently observed TET2 mutations in human lymphoid disorders. TET2 mutations could be detected in immature progenitors endowed with myeloid colony-forming potential. Our results show that the mutations present in lymphoid tumor cells may occur at both early and later steps of lymphoid development and indicate that impairment of TET2 function or/and expression predisposes to the development of hematological malignancies.


Leukemia | 2011

Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias.

R. Itzykson; Olivier Kosmider; T. Cluzeau; V Mansat-De Mas; Francois Dreyfus; Odile Beyne-Rauzy; Bruno Quesnel; Norbert Vey; Véronique Gelsi-Boyer; Sophie Raynaud; Claude Preudhomme; Lionel Ades; Pierre Fenaux; Michaela Fontenay

The impact of ten-eleven-translocation 2 (TET2) mutations on response to azacitidine (AZA) in MDS has not been reported. We sequenced the TET2 gene in 86 MDS and acute myeloid leukemia (AML) with 20–30% blasts treated by AZA, that is disease categories wherein this drug is approved by Food and Drug Administration (FDA). Thirteen patients (15%) carried TET2 mutations. Patients with mutated and wild-type (WT) TET2 had mostly comparable pretreatment characteristics, except for lower hemoglobin, better cytogenetic risk and longer MDS duration before AZA in TET2 mutated patients (P=0.03, P=0.047 and P=0.048, respectively). The response rate (including hematological improvement) was 82% in MUT versus 45% in WT patients (P=0.007). Mutated TET2 (P=0.04) and favorable cytogenetic risk (intermediate risk: P=0.04, poor risk: P=0.048 compared with good risk) independently predicted a higher response rate. Response duration and overall survival were, however, comparable in the MUT and WT groups. In higher risk MDS and AML with low blast count, TET2 status may be a genetic predictor of response to AZA, independently of karyotype.


Journal of Clinical Oncology | 2013

Prognostic Score Including Gene Mutations in Chronic Myelomonocytic Leukemia

Olivier Kosmider; Aline Renneville; Véronique Gelsi-Boyer; Manja Meggendorfer; Margot Morabito; Céline Berthon; Lionel Ades; Pierre Fenaux; Odile Beyne-Rauzy; Norbert Vey; Thorsten Braun; Torsten Haferlach; Francois Dreyfus; Nicholas C.P. Cross; Claude Preudhomme; Olivier Bernard; Michaela Fontenay; William Vainchenker; Susanne Schnittger; Daniel Birnbaum; Nathalie Droin; Eric Solary

PURPOSE Several prognostic scoring systems have been proposed for chronic myelomonocytic leukemia (CMML), a disease in which some gene mutations-including ASXL1-have been associated with poor prognosis in univariable analyses. We developed and validated a prognostic score for overall survival (OS) based on mutational status and standard clinical variables. PATIENTS AND METHODS We genotyped ASXL1 and up to 18 other genes including epigenetic (TET2, EZH2, IDH1, IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSF2, U2AF1), transcription (RUNX1, NPM1, TP53), and signaling (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312 patients with CMML. Genotypes and clinical variables were included in a multivariable Cox model of OS validated by bootstrapping. A scoring system was developed using regression coefficients from this model. RESULTS ASXL1 mutations (P < .0001) and, to a lesser extent, SRSF2 (P = .03), CBL (P = .003), and IDH2 (P = .03) mutations predicted inferior OS in univariable analysis. The retained independent prognostic factors included ASXL1 mutations, age older than 65 years, WBC count greater than 15 ×10(9)/L, platelet count less than 100 ×10(9)/L, and anemia (hemoglobin < 10 g/dL in female patients, < 11g/dL in male patients). The resulting five-parameter prognostic score delineated three groups of patients with median OS not reached, 38.5 months, and 14.4 months, respectively (P < .0001), and was validated in an independent cohort of 165 patients (P < .0001). CONCLUSION A new prognostic score including ASXL1 status, age, hemoglobin, WBC, and platelet counts defines three groups of CMML patients with distinct outcomes. Based on concordance analysis, this score appears more discriminative than those based solely on clinical parameters.


Blood | 2009

TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs)

Olivier Kosmider; Veronique Gelsi-Boyer; Meyling Cheok; Sophie Grabar; Véronique Della-Valle; Françoise Picard; Franck Viguié; Bruno Quesnel; Odile Beyne-Rauzy; Eric Solary; Norbert Vey; Mathilde Hunault-Berger; Pierre Fenaux; Véronique Mansat-De Mas; Eric Delabesse; Philippe Guardiola; Catherine Lacombe; William Vainchenker; Claude Preudhomme; Francois Dreyfus; Olivier Bernard; Daniel Birnbaum; Michaela Fontenay

Oncogenic pathways underlying in the development of myelodysplastic syndromes (MDS) remain poorly characterized, but mutations of the ten-eleven translocation 2 (TET2) gene are frequently observed. In the present work, we evaluated the prognostic impact of TET2 mutations in MDS. Frameshift, nonsense, missense mutations, or defects in gene structure were identified in 22 (22.9%) of 96 patients (95% confidence interval [CI], 14.5-31.3 patients). Mutated and unmutated patients did not significantly differ in initial clinical or hematologic parameters. The 5-year OS was 76.9% (95% CI, 49.2%-91.3%) in mutated versus 18.3% (95% CI, 4.2%-41.1%) in unmutated patients (P = .005). The 3-year leukemia-free survival was 89.3% (95% CI, 63.1%-97.0%) in mutated versus 63.7% (95% CI, 48.2%-75.4%) in unmutated patients (P = .035). In univariate analysis (Cox proportional hazard model), the absence of TET2 mutation was associated with a 4.1-fold (95% CI, 1.4-12.0-fold) increased risk of death (P = .009). In multivariate analysis adjusted for age, International Prognostic Scoring System, and transfusion requirement, the presence of TET2 mutation remained an independent factor of favorable prognosis (hazard ratio, 5.2; 95% CI, 1.6-16.3; P = .005). These results indicate that TET2 mutations observed in approximately 20% of patients, irrespective of the World Health Organization or French-American-British subtype, represent a molecular marker for good prognosis in MDS.


Oncogene | 2005

Vital functions for lethal caspases

Sophie Launay; Olivier Hermine; Michaela Fontenay; Guido Kroemer; Eric Solary; Carmen Garrido

Caspases are a family of cysteine proteases expressed as inactive zymogens in virtually all animal cells. These enzymes play a central role in most cell death pathways leading to apoptosis but growing evidences implicate caspases also in nonapoptotic functions. Several of these enzymes, activated in molecular platforms referred to as inflammasomes, play a role in innate immune response by processing some of the cytokines involved in inflammatory response. Caspases are requested for terminal differentiation of specific cell types, whether this differentiation process leads to enucleation or not. These enzymes play also a role in T and B lymphocyte proliferation and, in some circumstances, appear to be cytoprotective rather than cytotoxic. These pleiotropic functions implicate caspases in the control of life and death but the fine regulation of their dual effect remains poorly understood. The nonapoptotic functions of caspases implicate that cells can restrict the proteolytic activity of these enzymes to selected substrates. Deregulation of the pathways in which caspases exert these nonapoptotic functions is suspected to play a role in the pathophysiology of several human diseases.


Leukemia | 2010

Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms

Olivier Kosmider; Véronique Gelsi-Boyer; L Slama; Francois Dreyfus; Odile Beyne-Rauzy; Bruno Quesnel; M Hunault-Berger; B Slama; Norbert Vey; Catherine Lacombe; Eric Solary; Daniel Birnbaum; Olivier Bernard; Michaela Fontenay

Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms


Haematologica | 2009

TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia

Olivier Kosmider; Véronique Gelsi-Boyer; Marion Ciudad; Cindy Racoeur; Valérie Jooste; Norbert Vey; Bruno Quesnel; Pierre Fenaux; Jean-Noël Bastie; Odile Beyne-Rauzy; Aspasia Stamatoulas; Francois Dreyfus; Norbert Ifrah; Stéphane de Botton; William Vainchenker; Oliver A. Bernard; Daniel Birnbaum; Michaela Fontenay; Eric Solary

Acquired somatic deletions and loss-of-function mutations in one or several codons of the TET2 (Ten-Eleven Translocation-2) gene were recently identified in hematopoietic cells from patients with myeloid neoplasms. This study shows that TET2 mutations are more frequent in chronic myelomonocytic leukemia than in other subgroups of myeloid neoplasms studied so far. Background Acquired somatic deletions and loss-of-function mutations in one or several codons of the TET2 (Ten-Eleven Translocation-2) gene were recently identified in hematopoietic cells from patients with myeloid malignancies, including myeloproliferative disorders and myelodys-plastic syndromes. The present study was designed to determine the prevalence of TET2 gene alterations in chronic myelomonocytic leukemias. Design and Methods Blood and bone marrow cells were collected from 88 patients with chronic phase chronic myelomonocytic leukemia and from 14 with acute transformation of a previously identified disease. Polymerase chain reaction analysis and direct sequencing were used to sequence exons 3 to 11 of the TET2 gene. Annotated single nucleotide polymorphisms were excluded. Survival curves were constructed by the Kaplan-Meier method. Results We detected TET2 mutations in 44 of 88 (50%) patients with chronic myelomonocytic leukemia, which suggests that TET2 gene mutations are especially frequent in this myeloid disease. A TET2 gene alteration was identified in 18 of the 43 patients studied at diagnosis and was associated with a trend to a lower overall survival rate; confining the analysis to the 29 patients with chronic myelomonocytic leukemia-1, according to the WHO classification, the difference in overall survival between patients with or without TET2 gene mutations became statistically significant. Conclusions TET2 gene alterations are more frequent in chronic myelomonocytic leukemia than in other subgroups of hematopoietic diseases studied so far and could negatively affect the patients’ outcome. The striking association between TET2 gene alterations and monocytosis, already observed in patients with systemic mastocytosis, could indicate a negative role of TET2 in the control of monocytic lineage determination.


Blood | 2012

Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes

Olivier Kosmider; Véronique Gelsi-Boyer; Aline Renneville; Nadine Carbuccia; Claire Hidalgo-Curtis; Véronique Della Valle; Lucile Couronné; Laurianne Scourzic; Virginie Chesnais; Agnès Guerci-Bresler; Bohrane Slama; Odile Beyne-Rauzy; Aline Schmidt-Tanguy; Aspasia Stamatoullas-Bastard; Francois Dreyfus; Thomas Prebet; Stéphane de Botton; Norbert Vey; Michael A. Morgan; Nicholas C.P. Cross; Claude Preudhomme; Daniel Birnbaum; Olivier Bernard; Michaela Fontenay

A cohort of MDS patients was examined for mutations affecting 4 splice genes (SF3B1, SRSF2, ZRSR2, and U2AF35) and evaluated in the context of clinical and molecular markers. Splice gene mutations were detected in 95 of 221 patients. These mutations were mutually exclusive and less likely to occur in patients with complex cytogenetics or TP53 mutations. SF3B1(mut) patients presented with lower hemoglobin levels, increased WBC and platelet counts, and were more likely to have DNMT3A mutations. SRSF2(mut) patients clustered in RAEB-1 and RAEB-2 subtypes and exhibited pronounced thrombocytopenias. ZRSR2(mut) patients clustered in International Prognostic Scoring System intermediate-1 and intermediate-2 risk groups, had higher percentages of bone marrow blasts, and more often displayed isolated neutropenias. SRSF2 and ZRSR2 mutations were more common in TET2(mut) patients. U2AF35(mut) patients had an increased prevalence of chromosome 20 deletions and ASXL1 mutations. Multivariate analysis revealed an inferior overall survival and a higher AML transformation rate for the genotype ZRSR2(mut)/TET2(wt) (overall survival: hazard ratio = 3.3; 95% CI, 1.4-7.7; P = .006; AML transformation: hazard ratio = 3.6; 95% CI, 2-4.2; P = .026). Our results demonstrate that splice gene mutations are among the most frequent molecular aberrations in myelodysplastic syndrome, define distinct clinical phenotypes, and show preferential associations with mutations targeting transcriptional regulation.


Blood | 2013

Clonal architecture of chronic myelomonocytic leukemias.

Olivier Kosmider; Aline Renneville; Margot Morabito; Claude Preudhomme; Céline Berthon; Lionel Ades; Pierre Fenaux; Uwe Platzbecker; Olivier Gagey; Philippe Rameau; Guillaume Meurice; Cedric Orear; François Delhommeau; Olivier A. Bernard; Michaela Fontenay; William Vainchenker; Nathalie Droin; Eric Solary

Genomic studies in chronic myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and MPN/MDS, have identified common mutations in genes encoding signaling, epigenetic, transcription, and splicing factors. In the present study, we interrogated the clonal architecture by mutation-specific discrimination analysis of single-cell-derived colonies in 28 patients with chronic myelomonocytic leukemias (CMML), the most frequent MPN/MDS. This analysis reveals a linear acquisition of the studied mutations with limited branching through loss of heterozygosity. Serial analysis of untreated and treated samples demonstrates a dynamic architecture on which most current therapeutic approaches have limited effects. The main disease characteristics are early clonal dominance, arising at the CD34(+)/CD38(-) stage of hematopoiesis, and granulomonocytic differentiation skewing of multipotent and common myeloid progenitors. Comparison of clonal expansions of TET2 mutations in MDS, MPN, and CMML, together with functional invalidation of TET2 in sorted progenitors, suggests a causative link between early clonal dominance and skewed granulomonocytic differentiation. Altogether, early clonal dominance may distinguish CMML from other chronic myeloid neoplasms with similar gene mutations.

Collaboration


Dive into the Michaela Fontenay's collaboration.

Top Co-Authors

Avatar

Olivier Kosmider

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Vey

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Sophie Raynaud

University of Nice Sophia Antipolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge