Michaela Petz
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michaela Petz.
Future Oncology | 2009
Franziska van Zijl; Gudrun Zulehner; Michaela Petz; Doris Schneller; Christoph Kornauth; Mara Hau; Georg Machat; Markus Grubinger; Heidemarie Huber; Wolfgang Mikulits
The transition of epithelial cells to a mesenchymal phenotype is of paramount relevance for embryonic development and adult wound healing. During the past decade, the epithelial-mesenchymal transition (EMT) has been increasingly recognized to occur during the progression of various carcinomas such as hepatocellular carcinoma (HCC). Here, we focus on EMT in both experimental liver models and human HCC, emphasizing the underlying molecular mechanisms which show partial recurrence of embryonic programs such as TGF-beta and Wnt/ beta-catenin signaling, including collaboration with hepatitis viruses. We further discuss the differentiation repertoire of malignant hepatocytes with respect to the potential acquisition of stemness, and the involvement of the mesenchymal to epithelial transition, the reversal of EMT, in cancer dissemination and metastatic colonization. The strong evidence for EMT in HCC patients demands novel strategies in pathological assessments and therapeutic concepts to efficiently combat HCC progression.
Nucleic Acids Research | 2012
Michaela Petz; Nicole C. C. Them; Heidemarie Huber; Hartmut Beug; Wolfgang Mikulits
The majority of transcripts that harbor an internal ribosome entry site (IRES) are involved in cancer development via corresponding proteins. A crucial event in tumor progression referred to as epithelial to mesenchymal transition (EMT) allows carcinoma cells to acquire invasive properties. The translational activation of the extracellular matrix component laminin B1 (LamB1) during EMT has been recently reported suggesting an IRES-mediated mechanism. In this study, the IRES activity of LamB1 was determined by independent bicistronic reporter assays. Strong evidences exclude an impact of cryptic promoter or splice sites on IRES-driven translation of LamB1. Furthermore, no other LamB1 mRNA species arising from alternative transcription start sites or polyadenylation signals were detected that account for its translational control. Mapping of the LamB1 5′-untranslated region (UTR) revealed the minimal LamB1 IRES motif between −293 and −1 upstream of the start codon. Notably, RNA affinity purification showed that the La protein interacts with the LamB1 IRES. This interaction and its regulation during EMT were confirmed by ribonucleoprotein immunoprecipitation. In addition, La was able to positively modulate LamB1 IRES translation. In summary, these data indicate that the LamB1 IRES is activated by binding to La which leads to translational upregulation during hepatocellular EMT.
Oncogene | 2009
C Lahsnig; M Mikula; Michaela Petz; Gudrun Zulehner; Doris Schneller; F van Zijl; Heidemarie Huber; Agnes Csiszar; Hartmut Beug; Wolfgang Mikulits
In human hepatocellular carcinoma (HCC), epithelial to mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. We employed a model of EMT based on immortalized p19ARF null hepatocytes (MIM), which display tumor growth upon expression of oncogenic Ras and undergo EMT through the synergism of Ras and transforming growth factor (TGF)-β. Here, we show that the interleukin-related protein interleukin-like EMT inducer (ILEI), a novel EMT-, tumor- and metastasis-inducing protein, cooperates with oncogenic Ras to cause TGF-β-independent EMT. Ras-transformed MIM hepatocytes overexpressing ILEI showed cytoplasmic E-cadherin, loss of ZO-1 and induction of α-smooth muscle actin as well as platelet-derived growth factor (PDGF)/PDGF-R isoforms. As shown by dominant-negative PDGF-R expression in these cells, ILEI-induced PDGF signaling was required for enhanced cell migration, nuclear accumulation of β-catenin, nuclear pY-Stat3 and accelerated growth of lung metastases. In MIM hepatocytes expressing the Ras mutant V12-C40, ILEI collaborated with PI3K signaling resulting in tumor formation without EMT. Clinically, human HCC samples showed granular or cytoplasmic localization of ILEI correlating with well and poorly differentiated tumors, respectively. In conclusion, these data indicate that ILEI requires cooperation with oncogenic Ras to govern hepatocellular EMT through mechanisms involving PDGF-R/β-catenin and PDGF-R/Stat3 signaling.
Cancer | 2013
Dietmar Pils; Peter Horak; Petr Vanhara; Mariam Anees; Michaela Petz; Angela Alfanz; Alfred Gugerell; Michael Wittinger; Andreas Gleiss; Veronika Auner; Dan Tong; Robert Zeillinger; Elena-Ioana Braicu; Jalid Sehouli; Michael Krainer
Current prognostic information in ovarian cancer is based on tumor stage, tumor grade, and postoperative tumor size. Reliable molecular prognostic markers are scarce. In this article, the authors describe epigenetic events in a frequently deleted region on chromosome 8p22 that influence the expression of tumor suppressor candidate 3 (TUSC3), a putative tumor suppressor gene in ovarian cancer.
Nucleic Acids Research | 2012
Michaela Petz; Nicole C. C. Them; Heidemarie Huber; Wolfgang Mikulits
The extracellular matrix protein Laminin B1 (LamB1) regulates tumor cell migration and invasion. Carcinoma cells acquire invasive properties by epithelial to mesenchymal transition (EMT), which is a fundamental step in dissemination of metastatic cells from the primary tumor. Recently, we showed that enhanced translation of LamB1 upon EMT of malignant hepatocytes is mediated by an internal ribosome entry site (IRES). We demonstrated that the IRES transacting factor La binds the minimal IRES motif and positively modulates IRES activity of LamB1. Here, we show that platelet-derived growth factor (PDGF) enhances IRES activity of LamB1 by the increasing cytoplasmic localization of La during EMT. Accordingly, cells expressing dominant negative PDGF receptor display reduced cytoplasmic accumulation of La and show no elevation of IRES activity or endogenous LamB1 levels after stimulation with PDGF. Furthermore, La-mediated regulation of LamB1 IRES activity predominantly depends on MAPK/ERK signaling downstream of PDGF. Notably, LamB1 expression is not significantly downregulated by the impairment of the translation initiation factor eIF4E. In vivo, knockdown of La associated with decreased LamB1 expression and reduced tumor growth. Together, these data suggest that PDGF is required for the cytoplasmic accumulation of La that triggers IRES-dependent translation of LamB1 during EMT.
Gynecologic Oncology | 2010
Dietmar Pils; Michael Wittinger; Michaela Petz; Alfred Gugerell; Wolfgang Gregor; Angela Alfanz; Reinhard Horvat; Elena-Ioana Braicu; Jalid Sehouli; Robert Zeillinger; Wolfgang Mikulits; Michael Krainer
OBJECTIVE Transforming growth factor beta (TGF-beta) signaling via Smads plays a central role in carcinogenesis. Bmp and activin membrane-bound inhibitor (BAMBI) was initially described as a pseudoreceptor antagonizing TGF-beta receptor activation, thus impairing signaling. Here we wanted to estimate the role of BAMBI in ovarian cancer. METHODS The function of BAMBI was studied using a cell line model and intracellular localization experiments. The impact of BAMBI expression on patient outcome was estimated by real-time PCR and immunohistochemistry. RESULTS We demonstrate for the first time a nuclear co-translocation of BAMBI with Smad2/3 upon TGF-beta treatment. Moreover, overexpression of BAMBI in an in vitro model led to significantly increased proliferation (doubling time -37.0%, P=0.010), migration (+581.2%, P=0.004) and resistance to TGF-beta-mediated apoptosis (decrease of apoptosis from 30% in the control cells to 7% in the BAMBI-overexpressing cells). Although-prima facie-this fits to the thesis of BAMBI as a pseudoreceptor, it may also be explained by modulation of TGF-beta signaling in the nucleus, leading to the observed pro-oncogenic properties. The tumor promoting impact of BAMBI mRNA overexpression in vitro could not be confirmed in primary tumor samples, and while nearly all tumor samples showed up-regulation of BAMBI (37.3% 1+, 39.2% 2+, and 16.7% 3+, respectively) compared to undetectable BAMBI in healthy pre- and post-menopausal ovarian epithelia, no impact of BAMBI expression on recurrence free and overall survival could be observed. CONCLUSION These findings provide new insights into the Smad-mediated pathway by inferring that BAMBI is a novel modulator of TGF-beta signaling.
Nucleic Acids Research | 2007
Michaela Petz; Daniela Kozina; Heidemarie Huber; Tanja Siwiec; Joachim Seipelt; Wolfgang Sommergruber; Wolfgang Mikulits
Translation initiation of eukaryotic mRNAs generally occurs by cap-dependent ribosome scanning. However, certain mRNAs contain internal ribosome entry sites (IRES) allowing cap-independent translation. Several of these IRES-competent transcripts and their corresponding proteins are involved in tumourigenesis. This study focused on IRES-driven translation control during the epithelial to mesenchymal transition (EMT) of hepatocytes that reflects crucial aspects of carcinoma progression. Expression profiling of EMT revealed Laminin B1 (LamB1) to be translationally upregulated. The 5′-untranslated region (UTR) of LamB1 was potent to direct IRES-dependent mRNA utilization of a bicistronic reporter construct. Stringent assays for cryptic promoter and splice sites showed no aberrantly expressed transcripts, suggesting that the reporter activity provided by the leader region of LamB1 mRNA exclusively depends on IRES. In accordance, LamB1 expression increased upon negative interference with cap-dependent translation by expression of human rhinovirus 2A protease or heat shock of cells. Finally, the enhanced expression of LamB1 during EMT correlated with an elevated IRES activity. Together, these data provide first evidence that the 5′-UTR of LamB1 contains a bona fide IRES that directs translational upregulation of LamB1 during stress conditions and neoplastic progression of hepatocytes.
International Journal of Oncology | 2013
Petr Vaňhara; Peter Horak; Dietmar Pils; Mariam Anees; Michaela Petz; Wolfgang Gregor; Robert Zeillinger; Michael Krainer
Consequences of deregulated protein N-glycosylation on cancer pathogenesis are poorly understood. TUSC3 is a gene with a putative function in N-glycosylation, located on the short arm of chromosome 8. This is a chromosomal region of frequent genetic loss in ovarian cancer. We established recently that the expression of TUSC3 is epigenetically decreased in epithelial ovarian cancer compared to benign controls and provides prognostic information on patient survival. Therefore, we analyzed the consequences of silenced TUSC3 expression on proliferation, invasion and migration of ovarian cell lines. In addition, we performed subcellular fractionation, co-immunofluorescence and co-immunoprecipitation experiments to establish the molecular localization of TUSC3 in ovarian cancer cells. We demonstrated that TUSC3 is localized in the endoplasmic reticulum as a subunit of the oligosaccharyltransferase complex and is capable of modulation of glycosylation patterning of ovarian cancer cells. Most importantly, silencing of TUSC3 enhances proliferation and migration of ovarian cancer cells in vitro. Our observations suggest a role for N-glycosylating events in ovarian cancer pathogenesis in general, and identify TUSC3 as a tumor suppressor gene in ovarian cancer in particular.
Oncogene | 2017
Olivier Govaere; Michaela Petz; Jasper Wouters; Y-P Vandewynckel; E J Scott; Baki Topal; Frederik Nevens; Chris Verslype; Quentin M. Anstee; H. Van Vlierberghe; Wolfgang Mikulits; Tania Roskams
Human hepatocellular carcinomas (HCCs) expressing the biliary/hepatic progenitor cell marker keratin 19 (K19) have been linked with a poor prognosis and exhibit an increase in platelet-derived growth factor receptor α (PDGFRα) and laminin beta 1 (LAMB1) expression. PDGFRα has been reported to induce de novo synthesis of LAMB1 protein in a Sjogren syndrome antigen B (La/SSB)-dependent manner in a murine metastasis model. However, the role of this cascade in human HCC remains unclear. This study focused on the functional role of the PDGFRα-La/SSB-LAMB1 pathway and its molecular link to K19 expression in human HCC. In surgical HCC specimens from a cohort of 136 patients, PDGFRα expression correlated with K19 expression, microvascular invasion and metastatic spread. In addition, PDGFRα expression in pre-operative needle biopsy specimens predicted poor overall survival during a 5-year follow-up period. Consecutive histological staining demonstrated that the signaling components of the PDGFRα-La/SSB-LAMB1 pathway were strongly expressed at the invasive front. K19-positive HCC cells displayed high levels of α2β1 integrin (ITG) receptor, both in vitro and in vivo. In vitro activation of PDGFRα signaling triggered the translocation of nuclear La/SSB into the cytoplasm, enhanced the protein synthesis of LAMB1 by activating its internal ribosome entry site, which in turn led to increased secretion of laminin-111. This effect was abrogated by the PDGFRα-specific inhibitor crenolanib. Importantly LAMB1 stimulated ITG-dependent focal adhesion kinase/Src proto-oncogene non-receptor tyrosine kinase signaling. It also promoted the ITG-specific downstream target Rho-associated coiled-coil containing protein kinase 2, induced K19 expression in an autocrine manner, invadopodia formation and cell invasion. Finally, we showed that the knockdown of LAMB1 or K19 in subcutaneous xenograft mouse models resulted in significant loss of cells invading the surrounding stromal tissue and reduced HepG2 colonization into lung and liver after tail vein injection. The PDGFRα-LAMB1 pathway supports tumor progression at the invasive front of human HCC through K19 expression.
Journal of Hepatology | 2010
Michaela Petz; M. Hau; H. Huber; Wolfgang Mikulits
Background and Aims: Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC) is associated with high serum albumin levels in patients; therefore, high levels of serum albumin comprise a major indicator of a favorable prognosis. The mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Methods: Hep3B was cultured in MEM with no serum or containing 5 g/dl bovine albumin. As the control samples, Prionex (Polysciences, Inc.) was added to generate the same osmotic pressure as albumin. After 24-hour incubation, the expressions of afetoprotein (AFP), p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma) were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD) with appropriate software (ModFit LT, BD). Results: The mRNA levels of AFP relative to Alb(−): Alb(−), Alb(+), and Prionex, were 1.0.7±0.2 (p < 0.001 for Alb(−)), and 1±0.3, respectively. The mRNA levels of p21 were 1, 1.58±0.4 (p = 0.007 for Alb(−) and p=0.004 for Prionex), and 0.8±0.2, respectively. The mRNA levels of p57 were 1, 4.4±1.4 (p = 0.002 for Alb(−) and Prionex), and 1.0±0.1, respectively. The protein expression levels of Rb were similar within all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+). More cells in the G0/G1 phase and less cells in S and G2/M phases were obtained in Alb(+) than in Alb(−) (G0/G1: 45.2, 49.5, 44.7%; G2/M: 44.3, 41.5, 43.0%; S: 10.5, 7.4, 17.2%, Alb(−), Alb(+), Prionex, respectively). The same results were obtained in HepG2. Conclusions: The presence of albumin in serum reduces the phosphorylation of Rb proteins and enhances the expression of p21 and p57, following an increase in the G0/G1 cell population, and suppresses cell proliferation. These results suggest that albumin itself suppresses the proliferation of hepatocellular carcinoma.