Michaela R. Reagan
University of Maine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michaela R. Reagan.
Advanced Drug Delivery Reviews | 2009
Xiaohui Zhang; Michaela R. Reagan; David L. Kaplan
Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed.
Bioconjugate Chemistry | 2011
Keiji Numata; Michaela R. Reagan; Robert Goldstein; Michael Rosenblatt; David L. Kaplan
The present study demonstrates pDNA complexes of recombinant silk proteins containing poly(L-lysine) and tumor-homing peptides (THPs), which are globular and approximately 150-250 nm in diameter, show significant enhancement of target specificity to tumor cells by additions of F3 and CGKRK THPs. We report herein the preparation and study of novel nanoscale silk-based ionic complexes containing pDNA able to home specifically to tumor cells. Particular focus was on how the THP, F3 (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK), and CGKRK, enhanced transfection specificity to tumor cells. Genetically engineered silk proteins containing both poly(L-lysine) domains to interact with pDNA and the THP to bind to specific tumor cells for target-specific pDNA delivery were prepared using Escherichia coli, followed by in vitro and in vivo transfection experiments into MDA-MB-435 melanoma cells and highly metastatic human breast tumor MDA-MB-231 cells. Non-tumorigenic MCF-10A breast epithelial cells were used as a control cell line for in vitro tumor-specific delivery studies. These results demonstrate that combination of the bioengineered silk delivery systems and THP can serve as a versatile and useful new platform for nonviral gene delivery.
Cancer Research | 2010
Robert Goldstein; Michaela R. Reagan; Kristen Anderson; David L. Kaplan; Michael Rosenblatt
American women have a nearly 25% lifetime risk of developing breast cancer, with 20% to 40% of these patients developing life-threatening metastases. More than 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied human bone marrow-derived stem cells (hBMSC) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here, we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Furthermore, hBMSCs alter tumor growth and bone metastasis frequency. These may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor level, interleukin 17B (IL-17B)/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Archana Swami; Michaela R. Reagan; Pamela Basto; Yuji Mishima; Nazila Kamaly; Siobhan Glavey; Sufeng Zhang; Michele Moschetta; Dushanth Seevaratnam; Yong Zhang; Jinhe Liu; Masoumeh Memarzadeh; Jun Wu; Salomon Manier; Jinjun Shi; Nicolas Bertrand; Zhi Ning Lu; Kenichi Nagano; Roland Baron; Antonio Sacco; Aldo M. Roccaro; Omid C. Farokhzad; Irene M. Ghobrial
Significance Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic breast, prostate, and blood cancers. The difficulty of eliminating bone-residing cancer necessitates novel, alternative treatments to manipulate the tumor cells and their microenvironment, with minimal off-target effects. To this end, we engineered bone-homing, stealth nanoparticles to deliver anticancer, bone-stimulatory drugs, and demonstrated their utility with bortezomib (a model drug) and multiple myeloma (a model cancer). To test our hypothesis that increasing bone volume and strength inhibits tumor growth, mice were treated with these nanoparticles before being injected with cancer cells. Results demonstrated significantly slower myeloma growth and prolonged survival. Our research demonstrates the potential of bone-homing nanomedicine as an efficacious cancer treatment mechanism. Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.
Stem Cells | 2011
Michaela R. Reagan; David L. Kaplan
Despite the decline in U.S. cancer incidence and mortality rates, cancer remains the number one cause of death for people under the age of 85 and one in four people in the U.S. will die of cancer, mainly because of metastasis. Recently, interest in mesenchymal stem cell (MSC) tumor‐homing has led to inquires into: (a) why MSCs home to tumors, (b) what the inherent protumor and antitumor consequences are, and (c) how to best capitalize on MSC tumor‐homing for cell‐based diagnostics and therapy. Here, these questions are reviewed and method for addressing them using animal models and tracking methodologies (or, synonymously, detection methodologies) are discussed. First, MSCs in a regenerative and tumor‐homing context are reviewed, followed by MSC delivery and genetic labeling methods for tissue model systems. Finally, the use of the nonoptical methods, magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography, along with optical methods, fluorescence imaging and bioluminescent imaging, are reviewed related to tracking MSCs within disease model settings. The benefits and drawbacks of each detection method in animal models is reviewed along with the utility of each for therapeutic use. STEM CELLS 2011;29:920–927
Blood | 2012
Yong Zhang; Aldo M. Roccaro; Christopher P. Rombaoa; Ludmila M. Flores; Susanna Obad; Stacey M. Fernandes; Antonio Sacco; Yang Liu; Hai Ngo; Phong Quang; Abdel Kareem Azab; Feda Azab; Patricia Maiso; Michaela R. Reagan; Jennifer R. Brown; To-Ha Thai; Sakari Kauppinen; Irene M. Ghobrial
miR-155 acts as an oncogenic miR in B-cell lymphoproliferative disorders, including Waldenstrom macroglobulinemia (WM) and chronic lymphocytic leukemia, and is therefore a potential target for therapeutic intervention. However, efficient targeting of miRs in tumor cells in vivo remains a significant challenge for the development of miR-155-based therapeutics for the treatment of B-cell malignancies. In the present study, we show that an 8-mer locked nucleic acid anti-miR-155 oligonucleotide targeting the seed region of miR-155 inhibits WM and chronic lymphocytic leukemia cell proliferation in vitro. Moreover, anti-miR-155 delivered systemically showed uptake in the BM CD19(+) cells of WM-engrafted mice, resulting in the up-regulation of several miR-155 target mRNAs in these cells, and decreased tumor growth significantly in vivo. We also found miR-155 levels to be elevated in stromal cells from WM patients compared with control samples. Interestingly, stromal cells from miR-155-knockout mice led to significant inhibition of WM tumor growth, indicating that miR-155 may also contribute to WM proliferation through BM microenvironmental cells. The results of the present study highlight the therapeutic potential of anti-miR-155-mediated inhibition of miR-155 in the treatment of WM.
Leukemia | 2014
Yu-Tzu Tai; Yosef Landesman; Chirag Acharya; Yolanda Calle; Mike Zhong; Michele Cea; Daniel Tannenbaum; Antonia Cagnetta; Michaela R. Reagan; Aditya Munshi; William Senapedis; J. R. Saint-Martin; T. Kashyap; Sharon Shacham; Michael Kauffman; Yumei Gu; Lizi Wu; Irene M. Ghobrial; Fenghuang Zhan; Andrew L. Kung; S. A. Schey; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson
The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM.
Clinical Cancer Research | 2012
Michaela R. Reagan; Irene M. Ghobrial
Hematologic malignancies rely heavily on support from host cells through a number of well-documented mechanisms. Host cells, specifically mesenchymal stem cells (MSC), support tumor cell growth, metastasis, survival, bone marrow colonization, and evasion of the immune system. In multiple myeloma, similar to solid tumors, supporting cells have typically been considered healthy host cells. However, recent evidence reveals that many MSCs derived from patients with multiple myeloma (MM-MSC) show significant defects compared with MSCs from nondiseased donors (ND-MSC). These abnormalities range from differences in gene and protein expression to allelic abnormalities and can initiate after less than 1 day of coculture with myeloma cells or persist for months, perhaps years, after removal from myeloma influence. Alterations in MM-MSC function contribute to disease progression and provide new therapeutic targets. However, before the scientific community can capitalize on the distinctions between MM-MSCs and ND-MSCs, a number of confusions must be clarified, as we have done in this review, including the origin(s) of MM-MSCs, identification and characterization of MM-MSCs, and downstream effects and feedback circuits that support cancer progression. Further advances require more genetic analysis of MM-MSCs and disease models that accurately represent MSC-MM cell interactions. Clin Cancer Res; 18(2); 342–9. ©2011 AACR.
Nature | 2017
Peng Liu; Yaoting Ji; Tony Yuen; Elizabeth Rendina-Ruedy; Victoria E. DeMambro; Samarth Dhawan; Wahid Abu-Amer; Sudeh Izadmehr; Bin Zhou; Andrew C. Shin; Rauf Latif; Priyanthan Thangeswaran; Animesh Gupta; Jianhua Li; Valeria Shnayder; Samuel T. Robinson; Yue Eric Yu; Xingjian Zhang; Feiran Yang; Ping Lu; Yu Zhou; Ling-Ling Zhu; Douglas J. Oberlin; Terry F. Davies; Michaela R. Reagan; Aaron Brown; T. Rajendra Kumar; Solomon Epstein; Jameel Iqbal; Narayan G. Avadhani
Menopause is associated with bone loss and enhanced visceral adiposity. A polyclonal antibody that targets the β-subunit of the pituitary hormone follicle-stimulating hormone (Fsh) increases bone mass in mice. Here, we report that this antibody sharply reduces adipose tissue in wild-type mice, phenocopying genetic haploinsufficiency for the Fsh receptor gene Fshr. The antibody also causes profound beiging, increases cellular mitochondrial density, activates brown adipose tissue and enhances thermogenesis. These actions result from the specific binding of the antibody to the β-subunit of Fsh to block its action. Our studies uncover opportunities for simultaneously treating obesity and osteoporosis.
Blood | 2014
Siobhan Glavey; Salomon Manier; Alessandro Natoni; Antonio Sacco; Michele Moschetta; Michaela R. Reagan; Laura Murillo; Ilyas Sahin; Ping Wu; Yuji Mishima; Yunyu Zhang; Weijia Zhang; Gareth J. Morgan; Lokesh Joshi; Aldo M. Roccaro; Irene M. Ghobrial; Michael E. O'Dwyer
Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The role of altered sialylation in multiple myeloma (MM) cell trafficking has not been previously investigated. In the present study we identified high expression of β-galactoside α-2,3-sialyltransferase, ST3GAL6, in MM cell lines and patients. This gene plays a key role in selectin ligand synthesis in humans through the generation of functional sialyl Lewis X. In MRC IX patients, high expression of this gene is associated with inferior overall survival. In this study we demonstrate that knockdown of ST3GAL6 results in a significant reduction in levels of α-2,3-linked sialic acid on the surface of MM cells with an associated significant reduction in adhesion to MM bone marrow stromal cells and fibronectin along with reduced transendothelial migration in vitro. In support of our in vitro findings, we demonstrate significantly reduced homing and engraftment of ST3GAL6 knockdown MM cells to the bone marrow niche in vivo, along with decreased tumor burden and prolonged survival. This study points to the importance of altered glycosylation, particularly sialylation, in MM cell adhesion and migration.