Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michail Sitkovsky is active.

Publication


Featured researches published by Michail Sitkovsky.


Nature | 2001

Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage

Akio Ohta; Michail Sitkovsky

Inappropriate or prolonged inflammation is the main cause of many diseases; for this reason it is important to understand the physiological mechanisms that terminate inflammation in vivo. Agonists for several Gs-protein-coupled receptors, including cell-surface adenosine purinergic receptors, can increase levels of immunosuppressive cyclic AMP in immune cells; however, it was unknown whether any of these receptors regulates inflammation in vivo. Here we show that A2a adenosine receptors have a non-redundant role in the attenuation of inflammation and tissue damage in vivo. Sub-threshold doses of an inflammatory stimulus that caused minimal tissue damage in wild-type mice were sufficient to induce extensive tissue damage, more prolonged and higher levels of pro-inflammatory cytokines, and death of male animals deficient in the A2a adenosine receptor. Similar observations were made in studies of three different models of inflammation and liver damage as well as during bacterial endotoxin-induced septic shock. We suggest that A2a adenosine receptors are a critical part of the physiological negative feedback mechanism for limitation and termination of both tissue-specific and systemic inflammatory responses.


Nature Reviews Drug Discovery | 2005

Animal Models of sepsis: setting the stage

Jon A. Buras; Bernhard Holzmann; Michail Sitkovsky

Sepsis is a state of disrupted inflammatory homeostasis that is often initiated by infection. The development and progression of sepsis is multi-factorial, and affects the cardiovascular, immunological and endocrine systems of the body. The complexity of sepsis makes the clinical study of sepsis and sepsis therapeutics difficult. Animal models have been developed in an effort to create reproducible systems for studying sepsis pathogenesis and preliminary testing of potential therapeutic agents. However, demonstrated benefit from a therapeutic agent in animal models has rarely been translated into success in human clinical trials. This review summarizes the common animal sepsis models and highlights how results of recent human clinical trials might affect their use.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A2A adenosine receptor protects tumors from antitumor T cells

Akio Ohta; Elieser Gorelik; Simon J. Prasad; Franca Ronchese; Dmitriy Lukashev; Michael K.K. Wong; Xiaojun Huang; Sheila A. Caldwell; Kebin Liu; Patrick Smith; Jiang-Fan Chen; Edwin K. Jackson; Sergey Apasov; Scott I. Abrams; Michail Sitkovsky

The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.


Nature Reviews Immunology | 2005

Regulation of immune cells by local-tissue oxygen tension: HIF1|[alpha]| and adenosine receptors

Michail Sitkovsky; Dmitriy Lukashev

Immune cells are often exposed to low oxygen tensions, which markedly affect cellular metabolism. We describe how activated T cells adapt to the changing energy supplies in hypoxic areas of inflamed tissues by using hypoxia-inducible factor 1 (HIF1) to switch to glycolysis as the main source of energy and by signalling through extracellular-adenosine receptors. This hypoxic regulation might alter the balance between T helper 1 cells and T helper 2 cells and might alter the activities of cells of the innate immune system, thereby qualitatively and quantitatively affecting immune responses. This regulatory mechanism should be taken into account in the design and interpretation of in vitro and in vivo studies of immune-cell effector functions.


The New England Journal of Medicine | 2012

Purinergic signaling during inflammation.

Holger K. Eltzschig; Michail Sitkovsky; Simon C. Robson

Receptors for ATP and ADP and adenosine exert various effects. ATP and ADP signaling is mainly proinflammatory, and adenosine signaling is mainly antiinflammatory. Receptors for these nucleosides are emerging as therapeutic targets in a number of inflammatory and autoimmune diseases.


Nature Reviews Drug Discovery | 2005

Model organisms: Animal Models of sepsis: setting the stage

Jon A. Buras; Bernhard Holzmann; Michail Sitkovsky

Sepsis is a state of disrupted inflammatory homeostasis that is often initiated by infection. The development and progression of sepsis is multi-factorial, and affects the cardiovascular, immunological and endocrine systems of the body. The complexity of sepsis makes the clinical study of sepsis and sepsis therapeutics difficult. Animal models have been developed in an effort to create reproducible systems for studying sepsis pathogenesis and preliminary testing of potential therapeutic agents. However, demonstrated benefit from a therapeutic agent in animal models has rarely been translated into success in human clinical trials. This review summarizes the common animal sepsis models and highlights how results of recent human clinical trials might affect their use.


Journal of Immunology | 2001

Differential Effects of Physiologically Relevant Hypoxic Conditions on T Lymphocyte Development and Effector Functions

Charles C. Caldwell; Hidefumi Kojima; Dmitriy Lukashev; John Armstrong; Mark Farber; Sergey Apasov; Michail Sitkovsky

Direct measurements revealed low oxygen tensions (0.5–4.5% oxygen) in murine lymphoid organs in vivo. To test whether adaptation to changes in oxygen tension may have an effect on lymphocyte functions, T cell differentiation and functions at varying oxygen tensions were studied. These studies show: 1) differentiated CTL deliver Fas ligand- and perforin-dependent lethal hit equally well at all redox conditions; 2) CTL development is delayed at 2.5% oxygen as compared with 20% oxygen. Remarkably, development of CTL at 2.5% oxygen is more sustained and the CTL much more lytic; and 3) hypoxic exposure and TCR-mediated activation are additive in enhancing levels of hypoxia response element-containing gene products in lymphocyte supernatants. In contrast, hypoxia inhibited the accumulation of nonhypoxia response element-containing gene products (e.g., IL-2 and IFN-γ) in the same cultures. This suggests that T cell activation in hypoxic conditions in vivo may lead to different patterns of lymphokine secretion and accumulation of cytokines (e.g., vascular endothelial growth factor) affecting endothelial cells and vascular permeabilization. Thus, although higher numbers of cells survive and are activated during 20% oxygen incubation in vitro, the CTL which develop at 2.5% oxygen are more lytic with higher levels of activation markers. It is concluded that the ambient 20% oxygen tension (plus 2-ME) is remarkably well suited for immunologic specificity and cytotoxicity studies, but oxygen dependence should be taken into account during the design and interpretation of results of in vitro T cell development assays and gene expression studies in vivo.


PLOS Biology | 2005

Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury.

Manfred Thiel; Alexander Chouker; Akio Ohta; Edward Jackson; Charles C. Caldwell; Patrick Smith; Dmitry Lukashev; Iris Bittmann; Michail Sitkovsky

Acute respiratory distress syndrome (ARDS) usually requires symptomatic supportive therapy by intubation and mechanical ventilation with the supplemental use of high oxygen concentrations. Although oxygen therapy represents a life-saving measure, the recent discovery of a critical tissue-protecting mechanism predicts that administration of oxygen to ARDS patients with uncontrolled pulmonary inflammation also may have dangerous side effects. Oxygenation may weaken the local tissue hypoxia-driven and adenosine A2A receptor (A2AR)-mediated anti-inflammatory mechanism and thereby further exacerbate lung injury. Here we report experiments with wild-type and adenosine A2AR-deficient mice that confirm the predicted effects of oxygen. These results also suggest the possibility of iatrogenic exacerbation of acute lung injury upon oxygen administration due to the oxygenation-associated elimination of A2AR-mediated lung tissue-protecting pathway. We show that this potential complication of clinically widely used oxygenation procedures could be completely prevented by intratracheal injection of a selective A2AR agonist to compensate for the oxygenation-related loss of the lung tissue-protecting endogenous adenosine. The identification of a major iatrogenic complication of oxygen therapy in conditions of acute lung inflammation attracts attention to the need for clinical and epidemiological studies of ARDS patients who require oxygen therapy. It is proposed that oxygen therapy in patients with ARDS and other causes of lung inflammation should be combined with anti-inflammatory measures, e.g., with inhalative application of A2AR agonists. The reported observations may also answer the long-standing question as to why the lungs are the most susceptible to inflammatory injury and why lung failure usually precedes multiple organ failure.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1α-deficient chimeric mice

Hidefumi Kojima; Hua Gu; Saeko Nomura; Charles C. Caldwell; Tetsuji Kobata; Peter Carmeliet; Gregg L. Semenza; Michail Sitkovsky

Immune cells are exposed to low oxygen tensions as they develop and migrate between blood and different tissues, but the mechanisms by which lymphocytes adapt to hypoxia are poorly understood. Studies reported here of hypoxia-inducible factor 1α (HIF-1α) in lymphocyte development and functions suggest that it has a critical role in regulation of these processes. HIF-1α deficiency in Hif1α−/− → Rag2−/− chimeric mice results in dramatic and cell lineage-specific defects, which include appearance of abnormal peritoneal B-1-like lymphocytes, with high expression of B220 (CD45) receptor-associated protein tyrosine phosphatase and autoimmunity (accumulation of anti-dsDNA antibodies and rheumatoid factor in serum, deposits of IgG and IgM in kidney and proteinuria) as well as distortions of maturation of B-2 lymphocytes in bone marrow.


Journal of Biological Chemistry | 1997

Memory of Extracellular Adenosine A2A Purinergic Receptor-mediated Signaling in Murine T Cells

Masahiro Koshiba; Hidefumi Kojima; Steve Huang; Sergey Apasov; Michail Sitkovsky

Accumulation of extracellular and intracellular adenosine (Ado) under hypoxic conditions or in the absence of adenosine deaminase results in lymphocyte depletion and in severe combined immunodeficiency, which are currently explained by direct intracellular lymphotoxicity of Ado metabolites. In support of the alternative, “signaling” mechanism, we show that extracellular Ado (extAdo) suppresses all tested T cell receptor (TCR)-triggered effector functions of T lymphocytes including the TCR-triggered FasL mRNA up-regulation in cytotoxic T lymphocytes. Strong evidence against the intracellular lymphotoxicity of Ado (and in support of the signaling model) is provided by abrogation of TCR-triggered growth inhibition in Ado-exposed T cells. The brief exposure to Ado was sufficient to observe inhibition of TCR-triggered effector functions. The “memory” of T cells to exposure to extAdo is best explained by sustained increases in cAMP. Selective agonist (CGS21680) and antagonist (ZM241385) of A2A adenosine receptor were used in functional assays and cDNA probes for different sybtypes of adenosine receptors were used in Northern blot studies. A2Areceptors are identified as the predominantly expressed subtype of Gs-coupled Ado receptors in T cells. The demonstration of cross-talk between the A2A receptors and TCR in both directions support the possible role of A2A receptors in mechanisms of extAdo-mediated immunosuppression in vivounder adenosine deaminase deficiency and hypoxic conditions in,e.g., solid tumors.

Collaboration


Dive into the Michail Sitkovsky's collaboration.

Top Co-Authors

Avatar

Akio Ohta

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Apasov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Ohta

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radhika Kini

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge