Michal Dovciak
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michal Dovciak.
Experimental Astronomy | 2013
Paolo Soffitta; X. Barcons; R. Bellazzini; Joao Braga; Enrico Costa; George W. Fraser; Szymon Gburek; J. Huovelin; Giorgio Matt; M. Pearce; Juri Poutanen; V. Reglero; A. Santangelo; R. Sunyaev; Gianpiero Tagliaferri; Martin C. Weisskopf; Roberto Aloisio; E. Amato; Primo Attinà; Magnus Axelsson; L. Baldini; S. Basso; Stefano Bianchi; Pasquale Blasi; J. Bregeon; Alessandro Brez; N. Bucciantini; L. Burderi; Vadim Burwitz; P. Casella
Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
Monthly Notices of the Royal Astronomical Society | 2009
T. Di Salvo; A. D'Aì; R. Iaria; L. Burderi; Michal Dovciak; V. Karas; Giorgio Matt; A. Papitto; S. Piraino; Alessandro Riggio; N. R. Robba; A. Santangelo
Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kα transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent XMM―Newton observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high-velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; this feature appears to be smeared, and is compatible with being produced in the same region where the iron line is produced. From the line profile, we derive the physical parameters of the inner accretion disc with large precision. The line is identified with the Kα transition of highly ionized iron, Fe xxv, the inner disc radius is R in = 14 ± 2 R g (where Rg is the Gravitational radius, GM/c 2 ), the emissivity dependence from the disc radius is r ―2.27±0.08 , the inclination angle with respect to the line of sight is i = 39° ± 1 °. Finally, the XMM―Newton spectrum shows evidences of other low-energy emission lines, which again appear broad and their profiles are compatible with being produced in the same region where the iron line is produced.
Astronomy and Astrophysics | 2008
A. Eckart; F. K. Baganoff; M. Zamaninasab; Mark R. Morris; R. Schödel; L. Meyer; Koraljka Muzic; Mark W. Bautz; W. N. Brandt; Gordon Garmire; George R. Ricker; D. Kunneriath; C. Straubmeier; W. Duschl; Michal Dovciak; Vladimir Karas; Sera Markoff; F. Najarro; Jon C. Mauerhan; J. Moultaka; Anton Zensus
Context. Stellar dynamics indicate the presence of a supermassive 3−4 × 10 6 Mblack hole at the Galactic Center. It is associated with the variable radio, near-infrared, and X-ray source Sagittarius A* (SgrA*). Aims. The goal is the investigation and understanding of the physical processes responsible for the variable emission from SgrA*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescope (July 2005, May 2007) and the ACIS-I instrument aboard the Chandra X-ray Observatory (July 2005). Results. We find that for the July 2005 flare the variable and polarized NIR emission of SgrA* occurred synchronous with a moder- ately bright flare event in the X-ray domain with an excess 2−8 keV luminosity of about 8 × 10 33 erg/s. We find no time lag between the flare events in the two wavelength bands with a lower limit of ≤10 min. The May 2007 flare shows the highest sub-flare to flare contrast observed until now. It provides evidence for a variation in the profile of consecutive sub-flares. Conclusions. We confirm that highly variable and NIR polarized flare emission is non-thermal and that there exists a class of syn- chronous NIR/X-ray flares. We find that the flaring state can be explained via the synchrotron self-Compton (SSC) process involving up-scattered X-rays from the compact source component. The observations can be interpreted in a model involving a temporary disk with a short jet. In the disk component the flux density variations can be explained by spots on relativistic orbits around the central supermassive black hole (SMBH). The profile variations for the May 2007 flare can be interpreted as a variation of the spot structure due to differential rotation within the disk.
Astronomy and Astrophysics | 2008
A. Eckart; R. Schödel; M. García-Marín; G. Witzel; A. Weiss; F. K. Baganoff; Mark R. Morris; Thomas Bertram; Michal Dovciak; Wolfgang J. Duschl; Vladimir Karas; S. König; T. P. Krichbaum; M. Krips; D. Kunneriath; R. S. Lu; Sera Markoff; Jon C. Mauerhan; L. Meyer; J. Moultaka; K. Mužić; F. Najarro; Jorg-Uwe Pott; Karl Schuster; Lorant O. Sjouwerman; C. Straubmeier; Clemens Thum; Stuart N. Vogel; Helmut Wiesemeyer; M. Zamaninasab
Context. We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive (4×10 6 M⊙ ) black hole at the Galactic center. Aims. We study and model the physical processes giving rise to the variable emission of Sgr A*. Methods. Our non-relativistic modeling is based on simultaneous observations that have been carried out on 03 June, 2008. We used the NACO adaptive optics (AO) instrument at the European Southern Observatory’s Very Large Telescope and the LABOCA bolometer at the Atacama Pathfinder Experiment (APEX). We emphasize the importance of a multi-wavelength simultaneous fitting as a tool for imposing adequate constraints on the flare model ing. Results. The observations reveal strong flare activity in the 0.87 mm ( 345 GHz) sub-mm domain and in the 3.8µ/2.2µm NIR. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5±0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components. The derived physical quantities that describe the flare emission give a source component expansion speed of vexp∼ 0.005c, source sizes around one Schwarzschild radius with flux densities of a few Janskys, and spectral indices of �=0.8 to 1.8, corresponding to particle spectral indices ∼2.6 to 4.6. At the start of the flare the spectra of these components peak at frequencies of a few THz. Conclusions. These parameters suggest that the adiabatically expanding source components either have a bulk motion greater than vexp or the expanding material contributes to a corona or disk, confined to the immediate surroundings of Sgr A*.
Astronomy and Astrophysics | 2006
L. Meyer; A. Eckart; R. Schödel; Wolfgang J. Duschl; K. Mužić; Michal Dovciak; V. Karas
Context. Recent near-infrared polarization measurements of Sgr A* show that its emission is significantly polarized during flares and consists of a non- or weakly polarized main flare with highly polarized sub-flares. The flare activity suggests a quasi-periodicity of ∼20 min in agreement with previous observations. Aims. By simultaneous fitting of the lightcurve fluctuations and the time-variable polarization angle, we address the question of whether these changes are consistent with a simple hot spot/ring model, in which the interplay of relativistic effects plays the major role, or whether some more complex dependency of the intrinsic emissivity is required. Methods. We discuss the significance of the 20 min peak in the periodogram of a flare from 2003. We consider all general relativistic effects that imprint on the polarization degree and angle and fit the recent polarimetric data, assuming that the synchrotron mechanism is responsible for the intrinsic polarization and considering two different magnetic field configurations. Results. Within the quality of the available data, we think that the model of a single spot in addition to an underlying ring is favoured. In this model the broad near-infrared flares of Sgr A* are due to a sound wave that travels around the MBH once while the sub-flares, superimposed on the broad flare, are due to transiently heated and accelerated electrons which can be modeled as a plasma blob. Within this model it turns out that a strong statement about the spin parameter is difficult to achieve, while the inclination can be constrained to values ≥35° on a 3σ level.
Monthly Notices of the Royal Astronomical Society | 2012
T. Dauser; J. Svoboda; N. Schartel; J. Wilms; Michal Dovciak; M. Ehle; V. Karas; M. Santos-Lleó; Herman L. Marshall
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707 495 performed in 2010 September. Consistent with earlier results by Fabian et al. (2009) and Zoghbi et al. (2010), the spectrum is found to be dominated by relativistically broadened reflection features from an ionised accretion disc around a max imally rotating black hole. Even though the spectra changed between this observation and earlier XMM-Newton observations, the physical parameters of the black hole and accretion disc (i.e., spin and inclination) are consistent between both observations. We show that this refl ection spectrum is slightly modified by absorption in a mildly relativistic, highly ionised outflow which changed velocity from around0.11c to 0.17c between 2008 January and 2010 September. Alternative models, in which the spectral shape is dominated by absorption, lead to spectral fits of similar quality, however, the parameters inferred for the putative absorber are unphysical.
Astronomy and Astrophysics | 2006
L. Meyer; R. Schödel; A. Eckart; V. Karas; Michal Dovciak; Wolfgang J. Duschl
Context. The supermassive black hole at the Galactic center, Sgr A*, shows frequent radiation outbursts, often called ’flares’. I n the near-infrared some of these flares were reported as showing i ntrinsic quasi-periodicities. The flux peaks associated wi th the quasi-periodic behavior were found to be highly polarized. Aims. The aim of this work is to present new evidence to support previous findings of the properties of the polarized radiation fr om Sgr A* and to again provide strong support for the quasi-periodicity of∼18± 3 min reported earlier. Methods. Observations were carried out at the European Southern Observatory’s Very Large Telescope on Paranal, Chile. We used th e NAOS/CONICA adaptive optics/near-infrared camera instrument. By fitting the polarimetr ic lightcurves with a hot-spot model, we addressed the question of whether the data are consistent with this model. To fit the observed data we used a general relativistic ray -tracing code in combination with a simple hot-spot/ring model. Results. We report on new polarization measurements of a K-band flare f rom the supermassive black hole at the Galactic center. The data provide very strong support for a quasi-periodicity of 15.5± 2 min. The mean polarization of the flare is consistent with th e direction of the electric field vector that was reported in previous obser vations. The data can be modeled successfully with a combined blob/ring model. The inclination i of the blob orbit must be i> 20 ◦ on a 3σ level, and the dimensionless spin parameter of the black hole is derived to be a⋆> 0.5.
Monthly Notices of the Royal Astronomical Society | 2008
Michal Dovciak; Fabio Muleri; Rene W. Goosmann; V. Karas; G. Matt
Thermal emission from the accretion disc around a black hole can be polarized, due to Thomson scattering in a disc atmosphere. In Newtonian space, the polarization angle must be either parallel or perpendicular to the projection of the disc axis on the sky. As first pointed out by Stark and Connors in 1977, General Relativity effects strongly modify the polarization properties of the thermal radiation as observed at infinity. Among these effects, the rotation of the polarization angle with energy is particularly useful as a diagnostic tool. In this paper, we extend the Stark and Connors calculations by including the spectral hardening factor, several values of the optical depth of the scattering atmosphere and rendering the results to the expected performances of planned X-ray polarimeters. In particular, to assess the perspectives for the next generation of X-ray polarimeters, we consider the expected sensitivity of the detectors on board the planned POLARIX and International X-ray Observatory missions. We assume the two cases of a Schwarzschild and an extreme Kerr black hole with a standard thin disc and a scattering atmosphere. We compute the expected polarization degree and the angle as functions of the energy as they could be measured for different inclinations of the observer, optical thickness of the atmosphere and different values of the black hole spin. We assume the thermal emission dominates the X-ray band. Using the flux level of the microquasar GRS 1915+105 in the thermal state, we calculate the observed polarization.
Astronomy and Astrophysics | 2010
A. D'Aì; T. Di Salvo; D. R. Ballantyne; R. Iaria; N. R. Robba; A. Papitto; Alessandro Riggio; L. Burderi; S. Piraino; A. Santangelo; Giorgio Matt; Michal Dovciak; V. Karas
Context. High-resolution spectroscopy has recently revealed in many low-mass X-ray binaries hosting a neutron star that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well-fitted by a relativistically smeared line profile. Aims. The presence of other broad features, besides the iron line, together with a high S/N of the spectra offer the possibility of testing a self-consistent approach to the overall broadband reflection spectrum and evaluating the impact of the reflection component in the formation of the broadband X-ray spectra. Methods. We analyzed two XMM-Newton observations of the bright atoll source 4U 1705-44, which can be considered a prototype of the class of the persistent NS LMXBs showing both hard and soft states. The first observation was performed when the source was in a hard low flux state, the second during a soft, high-flux state. Both the spectra show broad iron emission lines. We fit the spectra using a two-component model, together with a reflection model specifically suited to the case of a neutron star, where the incident spectrum has a blackbody shape. Results. In the soft state, the reflection model, convolved with a relativistic smearing component, consistently describes the broad features present in the spectrum, and we find a clear relation between the temperature of the incident flux and the temperature of the harder X-ray component that we interpret as the boundary layer emission. In this state we find converging evidence that the boundary layer outer radius is � 2 times the neutron star radius. In the low flux state, we observe a change in the continuum shape of the spectrum with respect to the soft state. Still, the broad local emission features can be associated with a disk reflecting matter, but in a lower ionization state, and possibly produced in an accretion disk truncated at greater distance. Conclusions. Our analysis provides strong evidence that the reflection component in soft states of LMXBs comes from to hard X-ray thermal irradiation, which we identify with the boundary layer emission, also present in the continuum model. In the hard state, the broad iron line if also produced by reflection, and the continuum disk emission can be self-consistently accounted if the disk is truncated at a greater distance than the soft state.
The Astrophysical Journal | 2011
Michal Dovciak; Fabio Muleri; Rene W. Goosmann; V. Karas; G. Matt
We discuss a model of an X-ray illuminating source above an accretion disk of a rotating black hole. Within the so-called lamp-post scheme we compute the expected (observed) polarization properties of the radiation reaching an observer. We explore the dependences on model parameters, employing Monte Carlo radiation transfer computations of the X-ray reflection on the accretion disk and taking general relativity effects into account. In particular, we discuss the role of the black hole spin, of the observer viewing angle, and of the primary X-ray source distance from the black hole. We give several examples of the resulting polarization degree for two types of exemplary objects—active galactic nuclei and Galactic black holes. In order to assess potential observability of the polarization features, we assume the sensitivity of the proposed New Hard X-ray Mission (NHXM). We examine the energy range from several keV to ~50 keV, so the iron line complex and the Compton hump are included in our model spectra. We find the resultant polarization degree to increase at the higher end of the studied energy band, i.e., at 20 keV. Thus, the best results for polarimetry of reflection spectra should be achieved at the Compton hump energy region. We also obtain a higher polarization degree for large spin values of the black hole, small heights of the primary source, and low inclination angles of the observer.