Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Koc is active.

Publication


Featured researches published by Michal Koc.


PLOS ONE | 2011

Selective BRAFV600E Inhibitor PLX4720, Requires TRAIL Assistance to Overcome Oncogenic PIK3CA Resistance

Eftychia Oikonomou; Michal Koc; Vladimira Sourkova; Ladislav Andera; Alexander Pintzas

Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed.


Diabetes | 2013

Weight Loss Improves the Adipogenic Capacity of Human Preadipocytes and Modulates Their Secretory Profile

Lenka Rossmeislová; Lucia Mališová; Jana Kračmerová; Michaela Tencerová; Zuzana Kovacova; Michal Koc; Michaela Siklova-Vitkova; Nathalie Viquerie; Dominique Langin; Vladimir Stich

Calorie restriction–induced weight loss is accompanied by profound changes in adipose tissue characteristics. To determine the effect of weight loss on differentiation of preadipocytes and secretory capacity of in vitro differentiated adipocytes, we established cultures of these cells from paired subcutaneous adipose tissue biopsies obtained before and at the end of weight-reducing dietary intervention (DI) in 23 obese women. Based on lipid accumulation and the expression of differentiation markers, in vitro adipogenesis increased after weight loss and it was accompanied by enhanced expression of genes involved in de novo lipogenesis. This effect of weight loss was not driven by changes of peroxisome proliferator–activated receptor γ sensitivity to rosiglitazone. Weight loss also enhanced the expression of adiponectin and leptin while reducing that of monocyte chemoattractant protein 1 and interleukin-8 by cultured adipocytes. Thus, the weight-reducing (DI) increased adipogenic capacity of preadipocytes and shifted their secretion toward lower inflammatory profile. Reprogramming of preadipocytes could represent an adaptation to weight loss leading to partial restoration of preobese adipose tissue traits and thus contribute to the improvement of metabolic status. However, enhanced adipogenesis could also contribute to the unwanted weight regain after initial weight loss.


PLOS ONE | 2013

Ursodeoxycholic Acid but Not Tauroursodeoxycholic Acid Inhibits Proliferation and Differentiation of Human Subcutaneous Adipocytes

Lucia Mališová; Zuzana Kovacova; Michal Koc; Jana Kračmerová; Vladimir Stich; Lenka Rossmeislová

Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells.


American Journal of Respiratory Cell and Molecular Biology | 2016

Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea

Martin Weiszenstein; Larissa A. Shimoda; Michal Koc; Ondrej Seda; Jan Polak

Obstructive sleep apnea (OSA) is associated with insulin resistance, glucose intolerance, and type 2 diabetes. Causal mechanisms mediating this association are not well defined; however, augmented lipolysis in adipose might be involved. Here, we investigated the effect of acipimox treatment (lipolysis inhibitor) on glucose tolerance and insulin sensitivity in mice exposed to intermittent hypoxia (IH). C57BL6/J mice were exposed for 14 days to IH or control conditions. IH was created by decreasing the fraction of inspired oxygen from 20.9 to 6.5%, 60 times/h. Control exposure was air (fraction of inspired oxygen, 20.9%) delivered at an identical flow rate. Acipimox was provided in drinking water (0.5 g/ml) during exposures. After exposures, intraperitoneal insulin (0.5 IU/kg) and glucose (1 g/kg) tolerance tests were performed, and primary adipocytes were isolated for lipolysis experiments. IH elevated fasting glucose by 51% and worsened glucose tolerance and insulin sensitivity by 33 and 102%, respectively. In parallel, IH increased spontaneous lipolysis by 264%, and reduced epididymal fat mass by 15% and adipocyte size by 8%. Acipimox treatment prevented IH-induced lipolysis and increased epididymal fat mass and adipocyte size by 19 and 10%, respectively. Acipimox fully prevented IH-induced impairments in fasting glycemia, glucose tolerance, and insulin sensitivity. For all reported results, P less than 0.05 was considered significant. Augmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea.


Leukemia & Lymphoma | 2013

Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

Jan Molinsky; Magdalena Klanova; Michal Koc; Lenka Beranova; Ladislav Andera; Zdenka Ludvikova; Martina Böhmová; Zdenka Gašová; Miroslav Strnad; Robert Ivánek; Marek Trneny; Emanuel Necas; Jan Zivny; Pavel Klener

Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand with selective antitumor activity. However, many primary tumors are TRAIL resistant. Previous studies reported that roscovitine, a cyclin-dependent kinase inhibitor, sensitized various solid cancer cells to TRAIL. We show that roscovitine and TRAIL demonstrate synergistic cytotoxicity in hematologic malignant cell lines and primary cells. Pretreatment of TRAIL-resistant leukemia cells with roscovitine induced enhanced cleavage of death-inducing signaling complex-bound proximal caspases after exposure to TRAIL. We observed increased levels of both pro- and antiapoptotic BCL-2 proteins at the mitochondria following exposure to roscovitine. These results suggest that roscovitine induces priming of cancer cells for death by binding antiapoptotic BCL-2 proteins to proapoptotic BH3-only proteins at the mitochondria, thereby decreasing the threshold for diverse proapoptotic stimuli. We propose that the mitochondrial priming and enhanced processing of apical caspases represent major molecular mechanisms of roscovitine-induced sensitization to TRAIL in leukemia/lymphoma cells.


Biochemical and Biophysical Research Communications | 2015

Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes.

Michal Koc; Veronika Mayerová; Jana Kračmerová; Aline Mairal; Lucia Mališová; Vladimir Stich; Dominique Langin; Lenka Rossmeislová

BACKGROUND Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. METHODS Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. RESULTS Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1-24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. CONCLUSIONS Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes.


Biochemical and Biophysical Research Communications | 2016

Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells

Martin Weiszenstein; Martina Musutova; Andrea Plihalova; Katerina Westlake; Moustafa Elkalaf; Michal Koc; Antonin Prochazka; Jan Pala; Sumeet Gulati; Jan Trnka; Jan Polak

In-vitro investigation of the effects of hypoxia is limited by physical laws of gas diffusion and cellular O2 consumption, making prolonged exposures to stable O2 concentrations impossible. Using a gas-permeable cultureware, chronic effects of mild and severe hypoxia on triglyceride accumulation, lipid droplet size distribution, spontaneous lipolysis and gene expression of adipocyte-specific markers were assessed. 3T3-L1 cells were differentiated under 20%, 4% or 1% O2 using a gas-permeable cultureware. Triglyceride accumulation, expression of genes characteristic for advanced adipocyte differentiation and involvement of key lipogenesis enzymes were assessed after exposures. Lipogenesis increased by 375% under mild hypoxia, but dropped by 43% in severe hypoxia. Mild, but not severe, hypoxia increased formation of large lipid droplets 6.4 fold and strongly induced gene expression of adipocyte-specific markers. Spontaneous lipolysis increased by 488% in mild, but only by 135% in severe hypoxia. Inhibition of ATP-dependent citrate lyase suppressed hypoxia-induced lipogenesis by 81% and 85%. Activation of HIF inhibited lipogenesis by 59%. Mild, but not severe, hypoxia stimulates lipolysis and promotes adipocyte differentiation, probably through excess of acetyl-CoA originating from tricarboxylic acid cycle independently of HIF activation.


British Journal of Nutrition | 2014

Postprandial inflammation is not associated with endoplasmic reticulum stress in peripheral blood mononuclear cells from healthy lean men.

Jana Kračmerová; Eva Czudková; Michal Koc; Lucia Mališová; Michaela Šiklová; Vladimir Stich; Lenka Rossmeislová

The consumption of lipids and simple sugars induces an inflammatory response whose exact molecular trigger remains elusive. The aims of the present study were to investigate (1) whether inflammation induced by a single high-energy, high-fat meal (HFM) is associated with endoplasmic reticulum stress (ERS) in peripheral blood mononuclear cells (PBMC) and (2) whether these inflammatory and ERS responses could be prevented by the chemical chaperone ursodeoxycholic acid (UDCA). A total of ten healthy lean men were recruited to a randomised, blind, cross-over trial. Subjects were given two doses of placebo (lactose) or UDCA before the consumption of a HFM (6151 kJ; 47·4 % lipids). Blood was collected at baseline and 4 h after the HFM challenge. Cell populations and their activation were analysed using flow cytometry, and plasma levels of inflammatory cytokines were assessed by ELISA and Luminex technology. Gene expression levels of inflammatory and ERS markers were analysed in CD14⁺ and CD14⁻ PBMC using quantitative RT-PCR. The HFM induced an increase in the mRNA expression levels of pro-inflammatory cytokines (IL-1β, 2·1-fold; IL-8, 2·4-fold; TNF-α, 1·4-fold; monocyte chemoattractant protein 1, 2·1-fold) and a decrease in the expression levels of miR181 (0·8-fold) in CD14⁺ monocytes. The HFM challenge did not up-regulate the expression of ERS markers (XBP1, HSPA5, EDEM1, DNAJC3 and ATF4) in either CD14⁺ or CD14⁻ cell populations, except for ATF3 (2·3-fold). The administration of UDCA before the consumption of the HFM did not alter the HFM-induced change in the expression levels of ERS or inflammatory markers. In conclusion, HFM-induced inflammation detectable on the level of gene expression in PBMC was not associated with the concomitant increase in the expression levels of ERS markers and could not be prevented by UDCA.


Frontiers in Endocrinology | 2018

The Effect of Hypoxia and Metformin on Fatty Acid Uptake, Storage, and Oxidation in L6 Differentiated Myotubes

Martina Musutova; Moustafa Elkalaf; Natalie Klubickova; Michal Koc; Stanislav Povysil; Jan Rambousek; Beatriz Volckaert; František Duška; Minh Duc Trinh; Martin Kalous; Jan Trnka; Kamila Balusikova; Jan Kovar; Jan Polak

Metabolic impairments associated with obstructive sleep apnea syndrome (OSA) are linked to tissue hypoxia, however, the explanatory molecular and endocrine mechanisms remain unknown. Using gas-permeable cultureware, we studied the chronic effects of mild and severe hypoxia on free fatty acid (FFA) uptake, storage, and oxidation in L6 myotubes under 20, 4, or 1% O2. Additionally, the impact of metformin and the peroxisome proliferator-activated receptor (PPAR) β/δ agonist, called GW501516, were investigated. Exposure to mild and severe hypoxia reduced FFA uptake by 37 and 32%, respectively, while metformin treatment increased FFA uptake by 39% under mild hypoxia. GW501516 reduced FFA uptake under all conditions. Protein expressions of CD36 (cluster of differentiation 36) and SCL27A4 (solute carrier family 27 fatty acid transporter, member 4) were reduced by 17 and 23% under severe hypoxia. Gene expression of UCP2 (uncoupling protein 2) was reduced by severe hypoxia by 81%. Metformin increased CD36 protein levels by 28% under control conditions and SCL27A4 levels by 56% under mild hypoxia. Intracellular lipids were reduced by mild hypoxia by 18%, while in controls only, metformin administration further reduced intracellular lipids (20% O2) by 36%. Finally, palmitate oxidation was reduced by severe hypoxia, while metformin treatment reduced non-mitochondrial O2 consumption, palmitate oxidation, and proton leak at all O2 levels. Hypoxia directly reduced FFA uptake and intracellular lipids uptake in myotubes, at least partially, due to the reduction in CD36 transporters. Metformin, but not GW501516, can increase FFA uptake and SCL27A4 expression under mild hypoxia. Described effects might contribute to elevated plasma FFA levels and metabolic derangements in OSA.


Atherosclerosis | 2016

Acute hyperlipidemia initiates proinflammatory and proatherogenic changes in circulation and adipose tissue in obese women

Eva Krauzová; Jana Kračmerová; Lenka Rossmeislová; Lucia Mališová; Michaela Tencerová; Michal Koc; Vladimir Stich; Michaela Šiklová

Collaboration


Dive into the Michal Koc's collaboration.

Top Co-Authors

Avatar

Lenka Rossmeislová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Vladimir Stich

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jana Kračmerová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Lucia Mališová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Michaela Šiklová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Polak

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Michaela Tencerová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Zuzana Kovacova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Krauzová

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge