Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Kolar is active.

Publication


Featured researches published by Michal Kolar.


Gastroenterology | 2013

Troy, a Tumor Necrosis Factor Receptor Family Member, Interacts With Lgr5 to Inhibit Wnt Signaling in Intestinal Stem Cells

Bohumil Fafilek; Michaela Krausova; Martina Vojtechova; Vendula Pospichalova; Lucie Tumova; Eva Šloncová; Martina Huranová; Jitka Stancikova; Adela Hlavata; Jiri Svec; Radislav Sedlacek; Ondrej Luksan; Martin Oliverius; Ludek Voska; Milan Jirsa; Jan Pačes; Michal Kolar; Maria Krivjanska; Klara Klimesova; Helena Tlaskalova–Hogenova; Vladimir Korinek

BACKGROUND & AIMS The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice. METHODS We performed chromatin immunoprecipitation (ChIP) with DNA microarray analysis (ChIP-on-chip) to identify genes regulated by Wnt signaling in human colorectal cancer cells Colo320, DLD1, LS174T, and SW480. Formation of intestinal tumor was induced in C57BL/6J mice using azoxymethane and dextran sulfate. Intestinal tissues from these mice, as well as Apc(+/Min) and Apc(CKO/CKO)/Lgr5-EGFP-IRES-CreERT2 mice, were analyzed by immunohistochemistry and in situ hybridization. RESULTS We identified promoter regions of 960 genes that interacted with the Wnt pathway nuclear effector T-cell factor 4 in 4 different human colorectal cancer-derived cell lines; 18 of these promoters were present in all chromatin precipitates. Wnt signaling up-regulated a member of the tumor necrosis factor receptor superfamily called TROY. Levels of TROY messenger RNA were increased in human cells with deficiencies in the adenomatous polyposis coli (APC) gene and in cells stimulated with the Wnt3a ligand. Expression of Troy was significantly up-regulated in neoplastic tissues from mice during intestinal tumorigenesis. Lineage tracing experiments revealed that Troy is produced specifically by fast-cycling intestinal stem cells. TROY associated with a unique marker of these cells, leucine-rich repeat-containing G-protein coupled receptor (LGR) 5. In organoids established from the intestinal crypts, Troy suppressed signaling mediated by R-spondin, a Wnt agonist. CONCLUSIONS TROY is up-regulated in human colorectal cancer cell lines and in intestinal tumors in mice. It functions as a negative modulator of the Wnt pathway in LGR5-positive stem cells.


Molecular and Cellular Biochemistry | 2011

Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats

Vojtech Melenovsky; Jan Benes; Petra Škaroupková; David Sedmera; Hynek Strnad; Michal Kolar; Čestmír Vlček; Jiri Petrak; Jiri Benes; František Papoušek; Olena Oliyarnyk; Ludmila Kazdova; Ludek Cervenka

Metabolic interactions between adipose tissue and the heart may play an active role in progression of heart failure (HF). The aim of the study was to examine changes in myocardial and adipose tissue metabolism and gene expression in a rat HF model induced by chronic volume overload. HF was induced by volume overload from aorto-caval fistula (ACF) in 3-month-old male Wistar rats and animals were studied in the phase of decompensated HF (22nd week). HF rats showed marked eccentric cardiac hypertrophy, pulmonary congestion, increased LV end-diastolic pressure, and intraabdominal fat depletion. HF rats had preserved glucose tolerance, but increased circulating free fatty acids (FFA) and attenuated insulin response during oral glucose challenge. Isolated organ studies showed preserved responsiveness of adipose tissue lipolysis and lipogenesis to epinephrine and insulin in ACF. The heart of HF animals had markedly reduced triglyceride content (almost to half of controls), attenuated anti-oxidative reserve (GSH/GSSG), upregulated HF markers (ANP, periostin, thrombospondin-4), specific signaling pathways (Wnt, TGF-β), and downregulated enzymes of mitochondrial fatty acid oxidation, citric acid cycle, and respiratory chain. Adipose tissue transcription profiling showed upregulated receptor for gastric inhibitory polypeptide. In conclusion, ACF-induced HF model displays several deregulations of systemic metabolism. Despite elevation of systemic FFAs, myocardial triglycerides are low and insulin levels are attenuated, arguing against a role of lipotoxicity or insulin resistance in this model. Attenuated postprandial insulin response and relative lack of its antilipolytic effects may facilitate intraabdominal fat depletion observed in ACF-HF animals.


Journal of Bacteriology | 2011

Complete Genome Sequence of the Haloaromatic Acid-Degrading Bacterium Achromobacter xylosoxidans A8

Hynek Strnad; Jakub Ridl; Jan Pačes; Michal Kolar; Čestmír Vlček; Václav Pačes

Achromobacter xylosoxidans strain A8 was isolated from soil contaminated with polychlorinated biphenyls. It can use 2-chlorobenzoate and 2,5-dichlorobenzoate as sole sources of carbon and energy. This property makes it a good starting microorganism for further development toward a bioremediation tool. The genome of A. xylosoxidans consists of a 7-Mb chromosome and two large plasmids (98 kb and 248 kb). Besides genes for the utilization of xenobiotic organic substrates, it contains genes associated with pathogenesis, toxin production, and resistance. Here, we report the complete genome sequence.


Proteome Science | 2011

Proteomic and transcriptomic analysis of heart failure due to volume overload in a rat aorto-caval fistula model provides support for new potential therapeutic targets - monoamine oxidase A and transglutaminase 2

Jiri Petrak; Jana Pospisilova; Miroslava Šedinová; Petr L. Jedelsky; Lucie Lorkova; Ondrej Vit; Michal Kolar; Hynek Strnad; Jan Benes; David Sedmera; Ludek Cervenka; Vojtech Melenovsky

BackgroundChronic hemodynamic overloading leads to heart failure (HF) due to incompletely understood mechanisms. To gain deeper insight into the molecular pathophysiology of volume overload-induced HF and to identify potential markers and targets for novel therapies, we performed proteomic and mRNA expression analysis comparing myocardium from Wistar rats with HF induced by a chronic aorto-caval fistula (ACF) and sham-operated rats harvested at the advanced, decompensated stage of HF.MethodsWe analyzed control and failing myocardium employing iTRAQ labeling, two-dimensional peptide separation combining peptide IEF and nano-HPLC with MALDI-MS/MS. For the transcriptomic analysis we employed Illumina RatRef-12v1 Expression BeadChip.ResultsIn the proteomic analysis we identified 2030 myocardial proteins, of which 66 proteins were differentially expressed. The mRNA expression analysis identified 851 differentially expressed mRNAs.ConclusionsThe differentially expressed proteins confirm a switch in the substrate preference from fatty acids to other sources in the failing heart. Failing hearts showed downregulation of the major calcium transporters SERCA2 and ryanodine receptor 2 and altered expression of creatine kinases. Decreased expression of two NADPH producing proteins suggests a decreased redox reserve. Overexpression of annexins supports their possible potential as HF biomarkers. Most importantly, among the most up-regulated proteins in ACF hearts were monoamine oxidase A and transglutaminase 2 that are both potential attractive targets of low molecular weight inhibitors in future HF therapy.


Cancers | 2016

TCF/LEF Transcription Factors: An Update from the Internet Resources

Dusan Hrckulak; Michal Kolar; Hynek Strnad; Vladimir Korinek

T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.


Frontiers in Microbiology | 2016

Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil

Jakub Rídl; Michal Kolar; Michal Strejcek; Hynek Strnad; Petr Stursa; Jan Pačes; Tomas Macek; Ondrej Uhlik

Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.


PLOS ONE | 2016

Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

Jaroslav Nunvar; Lucie Kalferstova; Ruhi A. M. Bloodworth; Michal Kolar; José Degrossi; Silvina Lubovich; Silvia T. Cardona; Pavel Drevinek

Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence factors implies a genuine pathogenic nature of this novel Bcc species.


Journal of Clinical Microbiology | 2015

Gene Expression Profiling of Burkholderia cenocepacia at the Time of Cepacia Syndrome: Loss of Motility as a Marker of Poor Prognosis?

Lucie Kalferstova; Michal Kolar; Libor Fila; Jolana Vavrova; Pavel Drevinek

ABSTRACT Cepacia syndrome (CS) is a fatal septic condition that develops in approximately 20% of cystic fibrosis (CF) patients chronically infected with the Burkholderia cepacia complex (Bcc). The most common causative agent is Burkholderia cenocepacia, a clinically dominant Bcc species that contains the globally distributed epidemic strain sequence type 32 (ST32). Using microarrays, we compared the transcriptomes of ST32 isolates from the bloodstream at the time of CS with their sputum counterparts recovered 1 to 2 months prior to the development of CS. Global gene expression profiles of blood isolates revealed greater activities of the virulence genes involved in the type III secretion system, the bacterial exopolysaccharide cepacian, and quorum sensing, while reduced expression was demonstrated for flagellar genes. Furthermore, a nonmotile phenotype (as evaluated by a swimming motility assay) was identified in blood isolates from 6 out of 8 patients with CS; this phenotype was traceable to 24 months prior to the onset of CS. Loss of motility was not observed in any of the 89 ST32 isolates recovered over the course of chronic infection from 17 patients without CS. In conclusion, the gene expression of Bcc bacteria disseminated during CS has been elucidated for the first time. This study demonstrated marked differences at the transcriptome level between isogenic ST32 isolates that are attributable to the stage and site of infection. The finding of a nonmotile B. cenocepacia isolate may serve as a warning sign for the development of CS in the near future.


Journal of Hazardous Materials | 2017

Linking toxicity profiles to pollutants in sludge and sediments

Hana Stiborova; Michal Kolar; Jana Vrkoslavova; Jana Pulkrabova; Jana Hajslova; Katerina Demnerova; Ondrej Uhlik

Obtaining a complex picture of how pollutants synergistically influence toxicity of a system requires statistical correlation of chemical and ecotoxicological data. In this study, we determined concentrations of eight potentially toxic metals (PTMs) and four groups of organic pollutants in 15 sewage sludge and 12 river sediment samples, then linked measured contaminant concentrations to the toxicity of each matrix through constrained correspondence analysis (CCA). In sludge samples, Hg, As, hexachlorohexane (HCH), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) influenced the toxicity profiles, with the first four having significant effects and HBCD being marginally significant. In sediment samples, Hg, As, PBDEs, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT), HBCD, HCH and polycyclic aromatic hydrocarbons (PAHs) were found to explain toxicity profiles with Hg, As, PBDEs, HCB, DDT, HBCD, and HCH having significant effects and PAHs being marginally significant. Interestingly, HCH was present in small amounts yet proved to have a significant impact on toxicity. To the contrary, PAHs were often present in high amounts, yet proved to be only marginally significant for sediment toxicity. These results indicate that statistical correlation of chemical and ecotoxicological data can provide more detailed understanding of the role played by specific pollutants in shaping toxicity of sludge and sediments.


Cellular Signalling | 2015

NKD1 marks intestinal and liver tumors linked to aberrant Wnt signaling.

Jitka Stancikova; Michaela Krausova; Michal Kolar; Bohumil Fafilek; Jiri Svec; Radislav Sedlacek; Magdalena Neroldova; J. Dobeš; Monika Horazna; Lucie Janeckova; Martina Vojtechova; Martin Oliverius; Milan Jirsa; Vladimir Korinek

The activity of the Wnt pathway undergoes complex regulation to ensure proper functioning of this principal signaling mechanism during development of adult tissues. The regulation may occur at several levels and includes both positive and negative feedback loops. In the present study we employed one of such negative feedback regulators, naked cuticle homolog 1 (Nkd1), to follow the Wnt pathway activity in the intestine and liver and in neoplasia originated in these organs. Using lineage tracing in transgenic mice we localized Nkd1 mRNA to the bottom parts of the small intestinal crypts and hepatocytes surrounding the central vein of the hepatic lobule. Furthermore, in two mouse models of intestinal tumorigenesis, Nkd1 expression levels were elevated in tumors when compared to healthy tissue. We utilized a collection of human intestinal polyps and carcinomas to confirm that NKD1 represents a robust marker of neoplastic growth. In addition, expression analysis of NKD1 in liver cancer showed that high expression levels of the gene distinguish a subclass of hepatocellular carcinomas related to aberrant Wnt signaling. Finally, our results were confirmed by bioinformatic analysis of large publicly available datasets that included gene expression profiling and high-throughput sequencing data of human colon and liver cancer specimens.

Collaboration


Dive into the Michal Kolar's collaboration.

Top Co-Authors

Avatar

Hynek Strnad

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Karel Smetana

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Vladimir Korinek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Pačes

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jiri Svec

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ludek Cervenka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martina Vojtechova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Barbora Dvorankova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Bohumil Fafilek

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge