Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michał Kuniecki is active.

Publication


Featured researches published by Michał Kuniecki.


European Journal of Neuroscience | 2009

On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task

Rolf Verleger; Michał Kuniecki; Friderike Möller; Michaela Fritzmannova; Hartwig R. Siebner

An important aspect of human motor control is the ability to resolve conflicting response tendencies. Here we used single‐pulse transcranial magnetic stimulation (TMS) to track the time course of excitability changes in the primary motor hand areas (M1HAND) while the motor system resolved response conflicts. Healthy volunteers had to respond fast with their right and left index fingers to right‐ and left‐pointing arrows. These central target stimuli were preceded by flanking arrows, inducing premature response tendencies which competed with correct response activation. The time point of maximum premature activation was individually measured as peak latency of the lateralized readiness potential (LRP) in the EEG. In the subsequent TMS experiment, single pulses were applied to left or right M1HAND during the same flanker task. The amplitude of the motor evoked potentials in the contralateral first dorsal interosseus muscle was taken as an index of corticospinal excitability. Guided by the previous LRP measurement, magnetic stimuli were applied 0–90 ms after the individual LRP peak, to cover the epoch of conflict resolution. When flankers were incompatible with the target, excitability of the prematurely activated M1HAND gradually decreased during this 90 ms period. This decrease was paralleled by a mirror‐symmetrical increase in excitability in the other M1HAND. These results show that the inappropriate response tendency is cancelled in one M1HAND simultaneously with activation of the correct response in the other. This integrated implementation of response activation and cancellation at the level of the M1HAND presumably represents a downstream effect orchestrated by premotor brain regions.


Experimental Brain Research | 2010

The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

Rolf Verleger; Friderike Möller; Michał Kuniecki; Kamila Śmigasiewicz; Sergiu Groppa; Hartwig R. Siebner

In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2 identification might reflect capacity limitations of the left hemisphere, which might be aggravated by rTMS to the left parietal cortex. Therefore, rTMS pulses were applied during each trial, beginning simultaneously with T1 presentation. rTMS was directed either to P4 or to P3 (right or left parietal cortex) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field was indeed modified by rTMS, being further increased by rTMS to the left hemisphere rather than being reduced by rTMS to the right. It may be concluded that superiority of the right hemisphere in this task implies that this hemisphere is less irritable by external interference than the left hemisphere.


Frontiers in Human Neuroscience | 2015

The color red attracts attention in an emotional context. An ERP study.

Michał Kuniecki; Joanna Pilarczyk; Szymon Wichary

The color red is known to influence psychological functioning, having both negative (e.g., blood, fire, danger), and positive (e.g., sex, food) connotations. The aim of our study was to assess the attentional capture by red-colored images, and to explore the modulatory role of the emotional valence in this process, as postulated by Elliot and Maier (2012) color-in-context theory. Participants completed a dot-probe task with each cue comprising two images of equal valence and arousal, one containing a prominent red object and the other an object of different coloration. Reaction times were measured, as well as the event-related lateralizations of the EEG. Modulation of the lateralized components revealed that the color red captured and later held the attention in both positive and negative conditions, but not in a neutral condition. An overt motor response to the target stimulus was affected mainly by attention lingering over the visual field where the red cue had been flashed. However, a weak influence of the valence could still be detected in reaction times. Therefore, red seems to guide attention, specifically in emotionally-valenced circumstances, indicating that an emotional context can alter color’s impact both on attention and motor behavior.


Journal of Vision | 2014

Emotional content of an image attracts attention more than visually salient features in various signal-to-noise ratio conditions.

Joanna Pilarczyk; Michał Kuniecki

Emotional images are processed in a prioritized manner, attracting attention almost immediately. In the present study we used eye tracking to reveal what type of features within neutral, positive, and negative images attract early visual attention: semantics, visual saliency, or their interaction. Semantic regions of interest were selected by observers, while visual saliency was determined using the Graph-Based Visual Saliency model. Images were transformed by adding pink noise in several proportions to be presented in a sequence of increasing and decreasing clarity. Locations of the first two fixations were analyzed. The results showed dominance of semantic features over visual saliency in attracting attention. This dominance was linearly related to the signal-to-noise ratio. Semantic regions were fixated more often in emotional images than in neutral ones, if signal-to-noise ratio was high enough to allow participants to comprehend the gist of a scene. Visual saliency on its own did not attract attention above chance, even in the case of pure noise images. Regions both visually salient and semantically relevant attracted a similar amount of fixation compared to semantic regions alone, or even more in the case of neutral pictures. Results provide evidence for fast and robust detection of semantically relevant features.


Journal of Psychophysiology | 2003

The Influence of Emotionally Relevant Context on the Evoked Cardiac Response Triggered by an Irrelevant Stimulus

Michał Kuniecki; Robert J. Barry; Jan Kaiser

The effect of stimulus valence was examined in the evoked cardiac response (ECR) elicited by the exposition of neutral and negative slides as well as by an innocuous auditory stimulus presented on the affective foregrounds generated by the slides. The exposition of the aversive slide produced prolonged cardiac deceleration in comparison with the neutral slide. Similar prolonged deceleration accompanied exposition of the neutral auditory stimulus on the negative visual foreground in comparison with the neutral foreground. We interpret these results as an autonomic correlate of extended stimulus processing associated with the affective stimulus. The initial deceleration response, covering two or three slower heart beats, may be prolonged for several seconds before HR reaches the baseline level again. In such a case the evoked cardiac deceleration can be functionally divided into two parts: the reflexive bradycardia (ECR1) elicited by neutral stimuli and a late decelerative component (LDC). We can speculate that the latter is associated with an additional voluntary continuation of processing of the stimulus. This must involve some cognitive aspect different from the mental task performance which leads to the accelerative ECR2, and we suggest that processing of a stimulus with negative valence is involved in generating the LDC.


Frontiers in Human Neuroscience | 2017

Effects of Scene Properties and Emotional Valence on Brain Activations: A Fixation-Related fMRI Study

Michał Kuniecki; Kinga Wołoszyn; Aleksandra Domagalik; Joanna Pilarczyk

Temporal and spatial characteristics of fixations are affected by image properties, including high-level scene characteristics, such as object-background composition, and low-level physical characteristics, such as image clarity. The influence of these factors is modulated by the emotional content of an image. Here, we aimed to establish whether brain correlates of fixations reflect these modulatory effects. To this end, we simultaneously scanned participants and measured their eye movements, while presenting negative and neutral images in various image clarity conditions, with controlled object-background composition. The fMRI data were analyzed using a novel fixation-based event-related (FIBER) method, which allows the tracking of brain activity linked to individual fixations. The results revealed that fixating an emotional object was linked to greater deactivation in the right lingual gyrus than fixating the background of an emotional image, while no difference between object and background was found for neutral images. We suggest that deactivation in the lingual gyrus might be linked to inhibition of saccade execution. This was supported by fixation duration results, which showed that in the negative condition, fixations falling on the object were longer than those falling on the background. Furthermore, increase in the image clarity was correlated with fixation-related activity within the lateral occipital complex, the structure linked to object recognition. This correlation was significantly stronger for negative images, presumably due to greater deployment of attention towards emotional objects. Our eye-tracking results are in line with these observations, showing that the chance of fixating an object rose faster for negative images over neutral ones as the level of noise decreased. Overall, our study demonstrated that emotional value of an image changes the way that low and high-level scene properties affect the characteristics of fixations. The fixation-related brain activity is affected by the low-level scene properties and this impact differs between negative and neutral images. The high-level scene properties also affect brain correlates of fixations, but only in the case of the negative images.


Brain Structure & Function | 2017

Disentangling brain activity related to the processing of emotional visual information and emotional arousal.

Michał Kuniecki; Kinga Wołoszyn; Aleksandra Domagalik; Joanna Pilarczyk

Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.


Advances in Cognitive Psychology | 2016

Editorial Special Issue: Neuronus

Robert Henricus Johannes van der Lubbe; Michał Kuniecki

This special issue of the 12th volume of Advances in Cognitive Psychology is devoted to the Neuronus conference that took place in Kraków in 2015. In this editorial letter, we will focus on a selection of the materials and some follow-up research that was presented during this conference. We will also briefly introduce the conference contributions that successfully passed an external reviewing process.


Advances in Cognitive Psychology | 2013

Editorial to the special issue Neuronus.

Robert Henricus Johannes van der Lubbe; Michał Kuniecki

Did you visit the Neuronus conferences in the years 2012 and 2013 in Kraków? If not, then you certainly should have a close examination of this special issue including this introduction to at least have a glimpse of an idea of the highly interesting topics in the field of cognitive neuroscience that were presented at these conferences. If you were there, it is for sure a good choice to focus on this special issue as well, first to refresh your minds (we know our memories are far from perfect), but especially to see what happened with research of the presenters at these conferences.


Acta Neurobiologiae Experimentalis | 2003

Central control of heart rate changes during visual affective processing as revealed by fMRI

Michał Kuniecki; Andrzej Urbanik; Barbara Sobiecka; Justyna Kozub; Marek Binder

Collaboration


Dive into the Michał Kuniecki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kaiser

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Marek Binder

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Urbanik

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Coenen

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge