Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Markiewicz is active.

Publication


Featured researches published by Michal Markiewicz.


Langmuir | 2011

Comparative Model Studies of Gastric Toxicity of Nonsteroidal Anti-Inflammatory Drugs

Michal Markiewicz; Marta Pasenkiewicz-Gierula

A high percentage of people treated with a long-term nonsteroidal anti-inflammatory drug (NSAID) therapy suffer NSAID-induced gastrointestinal-tract-related side effects. A current hypothesis states that the side effects are related to the topical action of NSAID molecules on gastric mucus that lowers its resistance to luminal acid. The main lipids in human mucus are palmitoyloleoylphosphatidylcholine (POPC) and cholesterol (Chol). In this study, both X-ray diffraction and molecular dynamics (MD) simulation methods were employed to investigate the effects of selected NSAIDs in protonated and deprotonated states on the structural parameters of a POPC-Chol bilayer. The drugs were three commonly used NSAIDs with apparently different gastric toxicity: ketoprofen (KET), aspirin (ASP), and piroxicam (PXM). Both methods revealed that the effects of the NSAIDs on the POPC-Chol bilayer parameters were moderate and only slightly differentiated among the drugs. Much larger differences among the drugs were noticed in their interactions with interfacial water and Na(+) as well as with the polar groups of POPC and Chol, mainly via H-bonds. Of the three NSAIDs, KET interacted with POPC and water the most extensively, whereas ASP interacted with Chol and Na(+) more than did the other two. Interactions of PXM with POPC and Chol polar groups as well as with water and Na(+) were limited.


Biochimica et Biophysica Acta | 2013

Insights into eukaryotic Rubisco assembly - Crystal structures of RbcX chaperones from Arabidopsis thaliana.

Piotr Kolesinski; Przemyslaw Golik; Przemyslaw Grudnik; Janusz Piechota; Michal Markiewicz; Miroslaw Tarnawski; Grzegorz Dubin; Andrzej Szczepaniak

BACKGROUND Chloroplasts were formed by uptake of cyanobacteria into eukaryotic cells ca. 1.6 billion years ago. During evolution most of the cyanobacterial genes were transferred from the chloroplast to the nuclear genome. The rbcX gene, encoding an assembly chaperone required for Rubisco biosynthesis in cyanobacteria, was duplicated. Here we demonstrate that homologous eukaryotic chaperones (AtRbcX1 and AtRbcX2) demonstrate different affinities for the C-terminus of Rubisco large subunit and determine their crystal structures. METHODS Three-dimensional structures of AtRbcX1 and AtRbcX2 were resolved by the molecular replacement method. Equilibrium binding constants of the C-terminal RbcL peptide by AtRbcX proteins were determined by spectrofluorimetric titration. The binding mode of RbcX-RbcL was predicted using molecular dynamic simulation. RESULTS We provide crystal structures of both chaperones from Arabidopsis thaliana providing the first structural insight into Rubisco assembly chaperones form higher plants. Despite the low sequence homology of eukaryotic and cyanobacterial Rubisco chaperones the eukaryotic counterparts exhibit surprisingly high similarity of the overall fold to previously determined prokaryotic structures. Modeling studies demonstrate that the overall mode of the binding of RbcL peptide is conserved among these proteins. As such, the evolution of RbcX chaperones is another example of maintaining conserved structural features despite significant drift in the primary amino acid sequence. GENERAL SIGNIFICANCE The presented results are the approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants.


Biochimica et Biophysica Acta | 2016

Computer modelling studies of the bilayer/water interface

Marta Pasenkiewicz-Gierula; Krzysztof Baczynski; Michal Markiewicz; Krzysztof Murzyn

This review summarises high resolution studies on the interface of lamellar lipid bilayers composed of the most typical lipid molecules which constitute the lipid matrix of biomembranes. The presented results were obtained predominantly by computer modelling methods. Whenever possible, the results were compared with experimental results obtained for similar systems. The first and main section of the review is concerned with the bilayer-water interface and is divided into four subsections. The first describes the simplest case, where the interface consists only of lipid head groups and water molecules and focuses on interactions between the lipid heads and water molecules; the second describes the interface containing also mono- and divalent ions and concentrates on lipid-ion interactions; the third describes direct inter-lipid interactions. These three subsections are followed by a discussion on the network of direct and indirect inter-lipid interactions at the bilayer interface. The second section summarises recent computer simulation studies on the interactions of antibacterial membrane active compounds with various models of the bacterial outer membrane. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


international conference on transport systems telematics | 2010

Public Transport Information System for Visually Impaired and Blind People

Michal Markiewicz; Marek Skomorowski

This paper presents an assistive system for the visually impaired and blind people which helps them using public transport means. The proposed system uses mobile phones as a medium for passenger information system and GPS (Global Positioning System), GSM (Global System for Mobile Communications) and Bluetooth technologies for location and communication purposes. In the proposed system sound messages are given to the blind people via mobile phones which have dedicated software installed. This system has been implemented and tested in public transport in two pilot cities.


Biophysical Chemistry | 2010

Partition of tocopheryl glucopyranoside into liposome membranes studied by fluorescence methods.

Grażyna Neunert; P. Polewski; Michal Markiewicz; Piotr Wałejko; Stanisław Witkowski; K. Polewski

Vitamin E is poorly soluble in aqueous solutions. Enhanced physiological activity is expected from synthesized glycosidic tocopherol derivatives. We investigated binding, location and interactions of newly synthesized DL-alpha-tocopheryl beta D glucopyranoside (II) in phosphatidylcholine liposomes using fluorescence emission, anisotropy and lifetime methods. In liposomes emission maximum and fluorescence lifetime of glucoside were similar to those observed in methanol. High fluorescence anisotropy value indicates that tocopheryl glucoside is located in restricted mobility region of the membrane. Thermodynamic calculation indicated efficient partition of (II) into membrane. The energy minimization calculations of electrostatic potential distribution of (II) and solvation energies performed with Gaussian program confirmed strong affinity of glucosidic moiety for ionic interactions and supported proposed model of interactions. The all obtained data indicate that DL-alpha-tocopheryl beta-glucoside is embedded into the membrane interior whereas sugar moiety protrudes above the water/lipid interface of the membrane surface.


PLOS ONE | 2013

Biochemical and Structural Characterization of SplD Protease from Staphylococcus aureus

Michal Zdzalik; Magdalena Kalinska; Magdalena Wysocka; Justyna Stec-Niemczyk; Przemyslaw Cichon; Natalia Stach; Natalia Gruba; Henning R. Stennicke; Abeer Jabaiah; Michal Markiewicz; Sylwia Kedracka-Krok; Benedykt Wladyka; Patrick S. Daugherty; Adam Lesner; Krzysztof Rolka; Adam Dubin; Jan Potempa; Grzegorz Dubin

Staphylococcus aureus is a dangerous human pathogen. A number of the proteins secreted by this bacterium are implicated in its virulence, but many of the components of its secretome are poorly characterized. Strains of S. aureus can produce up to six homologous extracellular serine proteases grouped in a single spl operon. Although the SplA, SplB, and SplC proteases have been thoroughly characterized, the properties of the other three enzymes have not yet been investigated. Here, we describe the biochemical and structural characteristics of the SplD protease. The active enzyme was produced in an Escherichia coli recombinant system and purified to homogeneity. P1 substrate specificity was determined using a combinatorial library of synthetic peptide substrates showing exclusive preference for threonine, serine, leucine, isoleucine, alanine, and valine. To further determine the specificity of SplD, we used high-throughput synthetic peptide and cell surface protein display methods. The results not only confirmed SplD preference for a P1 residue, but also provided insight into the specificity of individual primed- and non-primed substrate-binding subsites. The analyses revealed a surprisingly narrow specificity of the protease, which recognized five consecutive residues (P4-P3-P2-P1-P1’) with a consensus motif of R-(Y/W)-(P/L)-(T/L/I/V)↓S. To understand the molecular basis of the strict substrate specificity, we crystallized the enzyme in two different conditions, and refined the structures at resolutions of 1.56 Å and 2.1 Å. Molecular modeling and mutagenesis studies allowed us to define a consensus model of substrate binding, and illustrated the molecular mechanism of protease specificity.


Biochimie | 2015

A computer model of a polyunsaturated monogalactolipid bilayer.

Krzysztof Baczynski; Michal Markiewicz; Marta Pasenkiewicz-Gierula

1,2-di-O-acyl-3-O-β-D-galactopyranosyl-sn-glycerol (MGDG) is the main lipid component of thylakoid membranes of higher plants and algae. This monogalactolipid is thought of as a non-bilayer lipid but actually it can form both lamellar and nonlamellar phases. In this study, molecular dynamics (MD) simulations of the fully hydrated di-18:3 MGDG bilayer in the lamellar phase were carried out at 310 and 295 K for 200 and 450 ns, respectively, using the GROMACS 4 software package and OPLS-AA force field. At both temperatures, the lamellar phase of the systems was stable. The pure di-18:3 MGDG bilayer is the first step towards creating a computer model of the lipid matrix of the thylakoid membrane and the main aim of this study was to validate the computer model of di-18:3 MGDG in the bilayer and also to assess the properties of the bilayer. However, only a few of the predicted properties could be compared with those derived experimentally and in other MD simulations because of insufficient amount of such data. Thus, direct validation of the MGDG bilayer proved difficult. Therefore, in the validation process also an indirect approach was used, in which a computer model of the 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) bilayer simulated at the same temperatures using the same force field as the MGDG bilayer was assessed. Successful validation of the DOPC bilayer parameterized in the OPLS-AA force field and similar properties of the MGDG molecules in the pure 18:3 MGDG and in binary 18:3 MGDG-PC bilayers indicate that the computer model of the MDGD molecule is faithful and the MGDG bilayer is representative on the time scales covered in these MD simulations.


Acta Biochimica Polonica | 2015

Properties of water hydrating the galactolipid and phospholipid bilayers: a molecular dynamics simulation study

Michal Markiewicz; Krzysztof Baczynski; Marta Pasenkiewicz-Gierula

Molecular dynamics simulations of 1,2-di-O-acyl-3-O-β-D-galactopyranosyl-sn-glycerol (MGDG) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) bilayers were carried out to compare the effect of the lipid head groups chemical structure on the dynamics and orientational order of the water molecules hydrating the bilayer. The effect of the bilayers on the diffusion of water is strong for the neighbouring water molecules i.e., those located not further than 4 Å from any bilayer atom. This is because the neighbouring water molecules are predominantly hydrogen bonded to the lipid oxygen atoms and their mobility is limited to a confined spatial volume. The choline group of DOPC and the galactose group of MGDG affect water diffusion less than the polar groups located deeper in the bilayer interface, and similarly. The latter is an unexpected result since interactions of water with these groups have a vastly different origin. The least affected by the bilayer lipids is the lateral diffusion of unbound water in the bilayer plane (x,y-plane) - it is because the diffusion is not confined by the periodic boundary conditions, whereas that perpendicular to the plane is. Interactions of water molecules with lipid groups also enforce certain orientations of water dipole moments. The profile of an average water orientation along the bilayer normal for the MGDG bilayer differs from that for the DOPC bilayer. In the DOPC bilayer, the ordering effect of the lipid head groups extends further into the water phase than in the MGDG bilayer, whereas inside the bilayer/water interface, ordering of the water dipoles in the MGDG bilayer is higher. It is possible that differences in the profiles of an average water orientation across the bilayer in the DOPC and MGDG bilayers are responsible for differences in the lateral pressure profiles of these bilayers.


Biophysical Chemistry | 2017

Assessing gastric toxicity of xanthone derivatives of anti-inflammatory activity using simulation and experimental approaches.

Michal Markiewicz; Tadeusz Librowski; Anna Lipkowska; Pawel Serda; Krzysztof Baczynski; Marta Pasenkiewicz-Gierula

Xanthones are tricyclic compounds of natural or synthetic origin exhibiting a broad spectrum of therapeutic activities. Three synthetic xanthone derivatives (KS1, KS2, and KS3) with properties typical for nonsteroidal anti-inflammatory drugs (NSAID) were objects of the presented model study. NSAIDs are in common use however; several of them exhibit gastric toxicity predominantly resulting from their direct interactions with the outermost lipid layer of the gastric mucosa that impair its hydrophobic barrier property. Among the studied xanthones, gastric toxicity of only KS2 has been determined in previous pharmacological studies, and it is low. In this study, carried out using X-ray diffraction and computer simulation, a palmitoyloleoylphosphatidylcholine-cholesterol bilayer (POPC-Chol) was used as a model of a hydrophobic layer of lipids protecting gastric mucosa as POPC and Chol are the main lipids in human mucus. X-ray diffraction data were used to validate the computer model. The aim of the study was to assess potential gastric toxicity of the xanthones by analysing their atomic level interactions with lipids, ions, and water in the lipid bilayer and their effect on the bilayer physicochemical properties. The results show that xanthones have small effect on the bilayer properties except for its rigidity whereas their interactions with water, ions, and lipids depend on their protonation state and for a given state, are similar for all the xanthones. As gastric toxicity of KS2 is low, based on MD simulations one can predict that toxicity of KS1 and KS3 is also low.


international conference on event based control communication and signal processing | 2015

An event-based language for simplified definition of home automation control routines

Michal Markiewicz

Capabilities of the devices installed in a smart home are often fully accessible only to qualified integrators. As the users become more interested in setting up their home automation devices by their own, there is a need to bridge the gap between the magnitude of possibilities offered by home automation devices and the limitations of the methods accessible to the user. This paper proposes an event-based language that allows defining of home automation control routines in a form of statements which are uncomplicated, easy to learn for intermediate users, while being easy to interpret by microcontrollers with low processing power that are widespread in home automation devices. All the complexity related to defining rules has been covered by the language that provides access to various capabilities of a smart home under self-explanatory function names. The mechanism that executes statements written in the proposed language has been successfully implemented on a hardware platform with 8-bit microcontroller. KNX standard has been used for communication with home automation devices in this research in examples and case studies. During the test the proposed solution proved to be reliable and efficient for purpose of writing and executing eventbased home automation control routines.

Collaboration


Dive into the Michal Markiewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawel Serda

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irena Roterman

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Dubin

Jagiellonian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge