Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal-Ruth Schweiger is active.

Publication


Featured researches published by Michal-Ruth Schweiger.


Journal of Virology | 2006

Bromodomain Protein 4 Mediates the Papillomavirus E2 Transcriptional Activation Function

Michal-Ruth Schweiger; Jianxin You; Peter M. Howley

ABSTRACT The papillomavirus E2 regulatory protein has essential roles in viral transcription and the initiation of viral DNA replication as well as for viral genome maintenance. Brd4 has recently been identified as a major E2-interacting protein and, in the case of the bovine papillomavirus type 1, serves to tether E2 and the viral genomes to mitotic chromosomes in dividing cells, thus ensuring viral genome maintenance. We have explored the possibility that Brd4 is involved in other E2 functions. By analyzing the binding of Brd4 to a series of alanine-scanning substitution mutants of the human papillomavirus type 16 E2 N-terminal transactivation domain, we found that amino acids required for Brd4 binding were also required for transcriptional activation but not for viral DNA replication. Functional studies of cells expressing either the C-terminal domain of Brd4 that can bind E2 and compete its binding to Brd4 or short interfering RNA to knock down Brd4 protein levels revealed a role for Brd4 in the transcriptional activation function of E2 but not for its viral DNA replication function. Therefore, these studies establish a broader role for Brd4 in the papillomavirus life cycle than as the chromosome tether for E2 during mitosis.


Cancer Discovery | 2012

Genome-wide DNA Methylation Events in TMPRSS2–ERG Fusion-Negative Prostate Cancers Implicate an EZH2-Dependent Mechanism with miR-26a Hypermethylation

Stefan T. Börno; Axel Fischer; Martin Kerick; Maria Fälth; Mark Laible; Jan C. Brase; Ruprecht Kuner; Andreas Dahl; Christina Grimm; Behnam Sayanjali; Melanie Isau; Christina Röhr; Andrea Wunderlich; Bernd Timmermann; Rainer Claus; Christoph Plass; Markus Graefen; Ronald Simon; Francesca Demichelis; Mark A. Rubin; Guido Sauter; Thorsten Schlomm; Holger Sültmann; Hans Lehrach; Michal-Ruth Schweiger

UNLABELLED Prostate cancer is the second most common cancer among men worldwide. Alterations in the DNA methylation pattern can be one of the leading causes for prostate cancer formation. This study is the first high-throughput sequencing study investigating genome-wide DNA methylation patterns in a large cohort of 51 tumor and 53 benign prostate samples using methylated DNA immunoprecipitation sequencing. Comparative analyses identified more than 147,000 cancer-associated epigenetic alterations. In addition, global methylation patterns show significant differences based on the TMPRSS2-ERG rearrangement status. We propose the hypermethylation of miR-26a as an alternative pathway of ERG rearrangement-independent EZH2 activation. The observed increase in differential methylation events in fusion-negative tumors can explain the tumorigenic process in the absence of genomic rearrangements. SIGNIFICANCE In contrast to TMPRSS2-ERG -rearranged tumors, the pathomechanism for gene fusion-negative tumors is completely unclear. Using a sequencing-based approach, our work uncovers significant global epigenetic alterations in TMPRSS2-ERG gene fusion-negative tumors and provides a mechanistic explanation for the tumor formation process.


Antioxidants & Redox Signaling | 2011

The Pentose Phosphate Pathway Is a Metabolic Redox Sensor and Regulates Transcription During the Antioxidant Response

Antje Krüger; Nana-Maria Grüning; Mirjam M. C. Wamelink; Martin Kerick; Alexander Kirpy; Dimitri V. Parkhomchuk; Katharina Bluemlein; Michal-Ruth Schweiger; Aleksey Soldatov; Hans Lehrach; Cornelis Jakobs; Markus Ralser

AIMS A shift in primary carbon metabolism is the fastest response to oxidative stress. Induced within seconds, it precedes transcriptional regulation, and produces reducing equivalents in form of NADPH within the pentose phosphate pathway (PPP). RESULTS Here, we provide evidence for a regulatory signaling function of this metabolic transition in yeast. Several PPP-deficiencies caused abnormal accumulation of intermediate metabolites during the stress response. These PPP-deficient strains had strong growth deficits on media containing oxidants, but we observed that part of their oxidant-phenotypes were not attributable to the production of NADPH equivalents. This pointed to a second, yet unknown role of the PPP in the antioxidant response. Comparing transcriptome profiles obtained by RNA sequencing, we found gene expression profiles that resembled oxidative conditions when PPP activity was increased. Vice versa, deletion of PPP enzymes disturbed and delayed mRNA and protein expression during the antioxidant response. INNOVATION Thus, the transient activation of the PPP is a metabolic signal required for balancing and timing gene expression upon an oxidative burst. CONCLUSION Consequently, dynamic rearrangements in central carbon metabolism seem to be of major importance for eukaryotic redox sensing, and represent a novel class of dynamic gene expression regulators.


Journal of Virology | 2007

Brd4-independent transcriptional repression function of the papillomavirus E2 proteins

Michal-Ruth Schweiger; Matthias Ottinger; Jianxin You; Peter M. Howley

ABSTRACT The papillomavirus E2 protein is a critical viral regulatory protein with transcription, DNA replication, and genome maintenance functions. We have previously identified the cellular bromodomain protein Brd4 as a major E2-interacting protein and established that it participates in tethering bovine papillomavirus type 1 E2 and viral genomes to host cell mitotic chromosomes. We have also shown that Brd4 mediates E2-dependent transcriptional activation, which is strongly inhibited by the disruption of E2/Brd4 binding as well as by short hairpin RNA (shRNA) knockdown of Brd4 expression levels. Since several mutants harboring single amino acid substitutions within the E2 transactivation domain that are defective for both transcriptional transactivation and Brd4 binding are also defective for transcriptional repression, we examined the role of Brd4 in E2 repression of the human papillomavirus E6/E7 promoter. Surprisingly, in a variety of in vivo assays, including transcription reporter assays, HeLa cell proliferation and colony reduction assays, and Northern blot analyses, neither blocking of the binding of E2 to Brd4 nor shRNA knockdown of Brd4 affected the E2 repression function. Our study provides evidence for a Brd4-independent mechanism of E2-mediated repression and suggests that different cellular factors must be involved in E2-mediated transcriptional activation and repression functions.


Journal of Virology | 2005

Inhibition of E2 Binding to Brd4 Enhances Viral Genome Loss and Phenotypic Reversion of Bovine Papillomavirus-Transformed Cells

Jianxin You; Michal-Ruth Schweiger; Peter M. Howley

ABSTRACT The bovine papillomavirus E2 protein tethers the viral genomes to mitotic chromosomes in dividing cells through binding to the C-terminal domain (CTD) of Brd4. Expression of the Brd4-CTD competes the binding of E2 to endogenous Brd4 in cells. Here we extend our previous study that identified Brd4 as the E2 mitotic chromosome receptor to show that Brd4-CTD expression released the viral DNA from mitotic chromosomes in BPV-1 transformed cells. Furthermore, stable expression of Brd4-CTD enhanced the frequency of morphological reversion of BPV-1 transformed C127 cells resulting in the complete elimination of the viral DNA in the resulting flat revertants.


Human Molecular Genetics | 2011

The KRAB-containing zinc-finger transcriptional regulator ZBRK1 activates SCA2 gene transcription through direct interaction with its gene product, ataxin-2

Linda Hallen; Holger Klein; Carola Stoschek; Silke Wehrmeyer; Ute Nonhoff; Markus Ralser; Jeannine Wilde; Christina Röhr; Michal-Ruth Schweiger; Kurt Zatloukal; Martin Vingron; Hans Lehrach; Zoltán Konthur; Sylvia Krobitsch

Gene transcription is controlled by transcriptional regulators acting with specific co-regulators to allow gene activation and repression. Here, we report the identification of the KRAB-containing zinc-finger transcriptional regulator, ZBRK1, as an interaction partner of the SCA2 gene product ataxin-2. Furthermore, we discovered that an elevated ZBRK1 level resulted in increased ataxin-2 levels, whereas interference on transcriptional and protein levels of ZBRK1 yielded reduced ataxin-2 levels, suggesting that a complex comprising ZBRK1 and ataxin-2 regulates SCA2 gene transcription. A bioinformatic analysis utilizing the known ZBRK1 consensus DNA-binding motif revealed ZBRK1-binding sites in the SCA2 promoter. These predicted sites were experimentally validated by chromatin-immunoprecipitation experiments along with luciferase-based promoter analyses corroborating that SCA2 gene transcription is controlled by a ZBRK1/ataxin-2 complex. Finally, we demonstrate that SCA2 gene transcription is significantly reduced in colon tumors possessing low ZBRK1 transcripts. Thus, our results provide first evidence that ataxin-2 acts as a co-regulator of ZBRK1 activating its own transcription, thereby representing the first identified ZBRK1 co-activator.


Journal of Virology | 2009

Brd4 Regulation of Papillomavirus Protein E2 Stability

Gang Zheng; Michal-Ruth Schweiger; Gustavo Martínez-Noël; Leon Zheng; Jennifer A. Smith; J. Wade Harper; Peter M. Howley

ABSTRACT The papillomavirus (PV) E2 protein is an important regulator of the viral life cycle. It has diverse roles in viral transcription, DNA replication, and genome maintenance. Our laboratory has previously identified the cellular bromodomain protein Brd4 as a key interacting partner of E2. Brd4 mediates the transcriptional activation function of E2 and plays an important role in viral genome maintenance in dividing cells. E2 interacts with the C-terminal domain (CTD) of Brd4, and the CTD functions in a dominant-negative manner through binding E2 and interfering with E2s interaction with the full-length Brd4 protein. Previous studies have shown that PV E2 proteins are short lived; however, the mechanisms regulating their stability and degradation have not yet been well established. In this study, we explored the role of Brd4 in the regulation of bovine PV 1 (BPV1) and human PV 16 (HPV16) E2 stability. Expression of the Brd4 CTD dramatically increases E2 levels. Both BPV1 E2 and HPV16 E2 are regulated by ubiquitylation, and Brd4 CTD expression blocks this ubiquitylation, thus stabilizing the E2 protein. Furthermore, we have identified the cullin-based E3 ligases and specifically cullin-3 as potential components of the ubiquitylation machinery that targets both BPV1 and HPV16 E2 for ubiquitylation. Expression of the Brd4 CTD blocks the interaction between E2 and the cullin-3 complex. In addition to Brd4s role in mediating E2 transcription and genome tethering activities, these data suggest a potential role for Brd4 in regulating E2 stability and protein levels within PV-infected cells.


Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2013

Genomics and epigenomics of colorectal cancer

Michal-Ruth Schweiger; Michelle Hussong; Christina Röhr; Hans Lehrach

Colorectal cancer is one of the most common cancer types worldwide and accounts for approximately 600,000 deaths annually. Work over the last decades has uncovered a number of tumor‐suppressor and oncogenes which are frequently mutated and might thus be responsible for the malignant transformation. However, only with the development of new high‐throughput technologies systematic analyses of the genome and epigenomes became feasible. While data generation has increased exponential, we are now faced with new challenges to transform these data into useful models that help predicting the outcome of genomic aberrations and to develop novel diagnostic and therapeutic strategies. As a basis for the modeling it is essential to understand and integrate current knowledge. We review previous and current ideas in colorectal cancer development and focus on a pathway oriented view. We show that colorectal cancer is a multilayer complex disease affecting the genome as well as the epigenome with direct consequences on the gene and microRNA (miRNA) expression signatures. The goal is to illustrate the current principles of colorectal cancer pathogenesis and to illustrate the need for elaborate computer modeling systems. WIREs Syst Biol Med 2013, 5:205–219. doi: 10.1002/wsbm.1206


Molecular Cancer | 2014

A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling

Andrea Köhler; Ummuhan Demir; Eva Kickstein; Sybille Krauss; Johanna Aigner; Beatriz Aranda-Orgilles; Antonios I. Karagiannidis; Clemens Achmüller; Huajie Bu; Andrea Wunderlich; Michal-Ruth Schweiger; Georg Schaefer; Susann Schweiger; Helmut Klocker; Rainer Schneider

BackgroundHigh androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. Here we investigate the interaction of MID1 and AR.MethodsAR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively.ResultsThe microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner.ConclusionPromotion of AR, in addition to enhancement of the Akt-, NFκB-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer.


Virology | 2009

Cell-type specific transcriptional activities among different papillomavirus long control regions and their regulation by E2.

Matthias Ottinger; Jennifer A. Smith; Michal-Ruth Schweiger; Dana Robbins; Maria L. C. Powell; Jianxin You; Peter M. Howley

This study systematically examined the viral long control region (LCR) activities and their responses to E2 for human papillomavirus (HPV) types 11, 16, and 18 as well as bovine papillomavirus 1 (BPV1) in a number of different cell types, including human cervical cancer cell lines, human oral keratinocytes, BJ fibroblasts, as well as CV1 cells. The study revealed cell- and virus-type specific differences among the individual LCRs and their regulation by E2. In addition, the integration of the LCR into the host genome was identified as a critical determinant for LCR activity and its response to E2. Collectively, these data indicate a more complex level of transcriptional regulation of the LCR by cellular and viral factors than previously appreciated, including a comparatively low LCR activity and poor E2 responsiveness for HPV16 in most human cells. This study should provide a valuable framework for future transcriptional studies in the papillomavirus field.

Collaboration


Dive into the Michal-Ruth Schweiger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxin You

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge