Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Sharon is active.

Publication


Featured researches published by Michal Sharon.


Nature | 2007

Mechanism of auxin perception by the TIR1 ubiquitin ligase

Xu Tan; Luz Irina Calderon-Villalobos; Michal Sharon; Changxue Zheng; Carol V. Robinson; Mark Estelle; Ning Zheng

Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1–ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1–substrate interactions by acting as a ‘molecular glue’. Our results establish the first structural model of a plant hormone receptor.


Nature | 2010

Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor

Laura B. Sheard; Xu-Hui Tan; Haibin Mao; John Withers; Gili Ben-Nissan; Thomas R. Hinds; Yuichi Kobayashi; Fong-Fu Hsu; Michal Sharon; John Browse; Sheng Yang He; Josep Rizo; Gregg A. Howe; Ning Zheng

Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved α-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.


PLOS Biology | 2006

Structural Organization of the 19S Proteasome Lid: Insights from MS of Intact Complexes

Michal Sharon; Thomas Taverner; Xavier I. Ambroggio; Raymond J. Deshaies; Carol V. Robinson

The 26S proteasome contains a 19S regulatory particle that selects and unfolds ubiquitinated substrates for degradation in the 20S catalytic particle. To date there are no high-resolution structures of the 19S assembly, nor of the lid or base subcomplexes that constitute the 19S. Mass spectra of the intact lid complex from Saccharomyces cerevisiae show that eight of the nine subunits are present stoichiometrically and that a stable tetrameric subcomplex forms in solution. Application of tandem mass spectrometry to the intact lid complex reveals the subunit architecture, while the coupling of a cross-linking approach identifies further interaction partners. Taking together our results with previous analyses we are able to construct a comprehensive interaction map. In summary, our findings allow us to identify a scaffold for the assembly of the particle and to propose a regulatory mechanism that prevents exposure of the active site until assembly is complete. More generally, the results highlight the potential of mass spectrometry to add crucial insight into the structural organization of an endogenous, wild-type complex.


Structure | 2003

Alternative Conformations of HIV-1 V3 Loops Mimic β Hairpins in Chemokines, Suggesting a Mechanism for Coreceptor Selectivity

Michal Sharon; Naama Kessler; Rina Levy; Susan Zolla-Pazner; Matthias Görlach; Jacob Anglister

The V3 loop of the HIV-1 envelope glycoprotein gp120 is involved in binding to the CCR5 and CXCR4 coreceptors. The structure of an HIV-1(MN) V3 peptide bound to the Fv of the broadly neutralizing human monoclonal antibody 447-52D was solved by NMR and found to be a beta hairpin. This structure of V3(MN) was found to have conformation and sequence similarities to beta hairpins in CD8 and CCR5 ligands MIP-1alpha, MIP-1beta, and RANTES and differed from the beta hairpin of a V3(IIIB) peptide bound to the strain-specific murine anti-gp120(IIIB) antibody 0.5beta. In contrast to the structure of the bound V3(MN) peptide, the V3(IIIB) peptide resembles a beta hairpin in SDF-1, a CXCR4 ligand. These data suggest that the 447-52D-bound V3(MN) and the 0.5beta-bound V3(IIIB) structures represent alternative V3 conformations responsible for selective interactions with CCR5 and CXCR4, respectively.


Accounts of Chemical Research | 2008

Subunit architecture of intact protein complexes from mass spectrometry and homology modeling.

Thomas Taverner; Helena Hernández; Michal Sharon; Brandon T. Ruotolo; Dijana Matak-Vinkovic; Damien P. Devos; Robert B. Russell; Carol V. Robinson

Proteomic studies have yielded detailed lists of protein components. Relatively little is known, however, of interactions between proteins or of their spatial arrangement. To bridge this gap, we are developing a mass spectrometry approach based on intact protein complexes. By studying intact complexes, we show that we are able to not only determine the stoichiometry of all subunits present but also deduce interaction maps and topological arrangements of subunits. To construct an interaction network, we use tandem mass spectrometry to define peripheral subunits and partial denaturation in solution to generate series of subcomplexes. These subcomplexes are subsequently assigned using tandem mass spectrometry. To facilitate this assignment process, we have developed an iterative search algorithm (SUMMIT) to both assign protein subcomplexes and generate protein interaction networks. This software package not only allows us to construct the subunit architecture of protein assemblies but also allows us to explore the limitations and potential of our approach. Using series of hypothetical complexes, generated at random from protein assemblies containing between six and fourteen subunits, we highlight the significance of tandem mass spectrometry for defining subunits present. We also demonstrate the importance of pairwise interactions and the optimal numbers of subcomplexes required to assign networks with up to fourteen subunits. To illustrate application of our approach, we describe the overall architecture of two endogenous protein assemblies isolated from yeast at natural expression levels, the 19S proteasome lid and the RNA exosome. In constructing our models, we did not consider previous electron microscopy images but rather deduced the subunit architecture from series of subcomplexes and our network algorithm. The results show that the proteasome lid complex consists of a bicluster with two tetrameric lobes. The exosome lid, by contrast, is a six-membered ring with three additional bridging subunits that confer stability to the ring and with a large subunit located at the base. Significantly, by combining data from MS and homology modeling, we were able to construct an atomic model of the yeast exosome. In summary, the architectural and atomic models of both protein complexes described here have been produced in advance of high-resolution structural data and as such provide an initial model for testing hypotheses and planning future experiments. In the case of the yeast exosome, the atomic model is validated by comparison with the atomic structure from X-ray diffraction of crystals of the reconstituted human exosome, which is homologous to that of the yeast. Overall therefore this mass spectrometry and homology modeling approach has given significant insight into the structure of two previously intractable protein complexes and as such has broad application in structural biology.


Biomolecules | 2014

Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway

Gili Ben-Nissan; Michal Sharon

For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Allosteric mechanisms can be distinguished using structural mass spectrometry

Andrey Dyachenko; Ranit Gruber; Liat Shimon; Amnon Horovitz; Michal Sharon

The activity of many proteins, including metabolic enzymes, molecular machines, and ion channels, is often regulated by conformational changes that are induced or stabilized by ligand binding. In cases of multimeric proteins, such allosteric regulation has often been described by the concerted Monod–Wyman–Changeux and sequential Koshland–Némethy–Filmer classic models of cooperativity. Despite the important functional implications of the mechanism of cooperativity, it has been impossible in many cases to distinguish between these various allosteric models using ensemble measurements of ligand binding in bulk protein solutions. Here, we demonstrate that structural MS offers a way to break this impasse by providing the full distribution of ligand-bound states of a protein complex. Given this distribution, it is possible to determine all the binding constants of a ligand to a highly multimeric cooperative system, and thereby infer its allosteric mechanism. Our approach to the dissection of allosteric mechanisms relies on advances in MS—which provide the required resolution of ligand-bound states—and in data analysis. We validated our approach using the well-characterized Escherichia coli chaperone GroEL, a double-heptameric ring containing 14 ATP binding sites, which has become a paradigm for molecular machines. The values of the 14 binding constants of ATP to GroEL were determined, and the ATP-loading pathway of the chaperone was characterized. The methodology and analyses presented here are directly applicable to numerous other cooperative systems and are therefore expected to promote further research on allosteric systems.


Journal of the American Society for Mass Spectrometry | 2010

How far can we go with structural mass spectrometry of protein complexes

Michal Sharon

Physical interactions between proteins and the formation of stable complexes form the basis of most biological functions. Therefore, a critical step toward understanding the integrated workings of the cell is to determine the structure of protein complexes, and reveal how their structural organization dictates function. Studying the three-dimensional organization of protein assemblies, however, represents a major challenge for structural biologists, due to the large size of the complexes, their heterogeneous composition, their flexibility, and their asymmetric structure. In the last decade, mass spectrometry has proven to be a valuable tool for analyzing such noncovalent complexes. Here, I illustrate the breadth of structural information that can be obtained from this approach, and the steps taken to elucidate the stoichiometry, topology, packing, dynamics, and shape of protein complexes. In addition, I illustrate the challenges that lie ahead, and the future directions toward which the field might be heading.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Molecular switch for alternative conformations of the HIV-1 V3 region: Implications for phenotype conversion

Osnat Rosen; Michal Sharon; Sabine R. Quadt-Akabayov; Jacob Anglister

HIV-1 coreceptor usage plays a critical role in virus tropism and pathogenesis. A switch from CCR5- to CXCR4-using viruses occurs during the course of HIV-1 infection and correlates with subsequent disease progression. A single mutation at position 322 within the V3 loop of the HIV-1 envelope glycoprotein gp120, from a negatively to a positively charged residue, was found to be sufficient to switch an R5 virus to an X4 virus. In this study, the NMR structure of the V3 region of an R5 strain, HIV-1JR-FL, in complex with an HIV-1-neutralizing antibody was determined. Positively charged and negatively charged residues at positions 304 and 322, respectively, oppose each other in the β-hairpin structure, enabling a favorable electrostatic interaction that stabilizes the postulated R5 conformation. Comparison of the R5 conformation with the postulated X4 conformation of the V3 region (positively charged residue at position 322) reveals that electrostatic repulsion between residues 304 and 322 in X4 strains triggers the observed one register shift in the N-terminal strand of the V3 region. We posit that electrostatic interactions at the base of the V3 β-hairpin can modulate the conformation and thereby influence the phenotype switch. In addition, we suggest that interstrand cation-π interactions between positively charged and aromatic residues induce the switch to the X4 conformation as a result of the S306R mutation. The existence of three pairs of identical (or very similar) amino acids in the V3 C-terminal strand facilitates the switch between the R5 and X4 conformations.


Journal of Biological Chemistry | 2006

20S proteasomes have the potential to keep substrates in store for continual degradation

Michal Sharon; Susanne Witt; Karin Felderer; Beate Rockel; Wolfgang Baumeister; Carol V. Robinson

The 20S core of the proteasome, which together with the regulatory particle plays a major role in the degradation of proteins in eukaryotic cells, is traversed by an internal system of cavities, namely two antechambers and one central proteolytic chamber. Little is known about the mechanisms underlying substrate binding and translocation of polypeptide chains into the interior of 20S proteasomes. Specifically, the role of the antechambers is not fully understood, and the number of substrate molecules sequestered within the internal cavities at any one time is unknown. Here we have shown that by applying both electron microscopy and tandem mass spectrometry (MS) approaches to this multisubunit complex we obtain precise information regarding the stoichiometry and location of substrates within the three chambers. The dissociation pattern in tandem MS allows us to conclude that a maximum of three green fluorescent protein and four cytochrome c substrate molecules are bound within the cavities. Our results also show that >95% of the population of proteasome molecules contain the maximum number of partially folded substrates. Moreover, we deduce that one green fluorescent protein or two cytochrome c molecules must reside within the central proteolytic chamber while the remaining substrate molecules occupy, singly, both antechambers. The results imply therefore an additional role for 20S proteasomes in the storage of substrates prior to their degradation, specifically in cases where translocation rates are slower than proteolysis. More generally, the ability to locate relatively small protein ligands sequestered within the 28-subunit core particle highlights the tremendous potential of tandem MS for deciphering substrate binding within large macromolecular assemblies.

Collaboration


Dive into the Michal Sharon's collaboration.

Top Co-Authors

Avatar

Gili Ben-Nissan

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Anglister

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Oren Moscovitz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Amnon Horovitz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Osnat Rosen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dror S. Chorev

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yishai Levin

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge