Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Zapotocky is active.

Publication


Featured researches published by Michal Zapotocky.


Cancer Cell | 2017

Intertumoral Heterogeneity within Medulloblastoma Subgroups

Florence M.G. Cavalli; Marc Remke; Ladislav Rampasek; John Peacock; David Shih; Betty Luu; Livia Garzia; Jonathon Torchia; Carolina Nör; A. Sorana Morrissy; Sameer Agnihotri; Yuan Yao Thompson; Claudia M. Kuzan-Fischer; Hamza Farooq; Keren Isaev; Craig Daniels; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Ji Yeoun Lee; Wieslawa A. Grajkowska; Marta Perek-Polnik; Alexandre Vasiljevic; Cécile Faure-Conter; Anne Jouvet; Caterina Giannini; Amulya A. Nageswara Rao; Kay Ka Wai Li; Ho Keung Ng; Charles G. Eberhart

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Blood | 2011

ETV6/RUNX1 (TEL/AML1) is a frequent prenatal first hit in childhood leukemia

Jan Zuna; Jozef Madzo; Ondrej Krejci; Zuzana Zemanova; Marketa Kalinova; Katerina Muzikova; Michal Zapotocky; Julia Starkova; Ondrej Hrusak; Jiri Horak; Jan Trka

To the editor: We read with interest the report by Lausten-Thomsen et al in this issue of Blood .[1][1] The study challenges the previous report by Mori et al describing ∼ 1% frequency of TEL/AML1 ( ETV6/RUNX1 )–positive cord blood in healthy newborns and questions the hypothesis of TEL/AML1


Journal of Clinical Oncology | 2017

Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas

Alvaro Lassaletta; Michal Zapotocky; Matthew Mistry; Vijay Ramaswamy; Marion Honnorat; Rahul Krishnatry; Ana Guerreiro Stucklin; Nataliya Zhukova; Anthony Arnoldo; Scott Ryall; Catriona Ling; Tara McKeown; Jim Loukides; Ofelia Cruz; Carmen de Torres; Cheng Ying Ho; Roger J. Packer; Ruth G. Tatevossian; Ibrahim Qaddoumi; Julie H. Harreld; James Dalton; Jean Mulcahy-Levy; Nicholas K. Foreman; Matthias A. Karajannis; Shiyang Wang; Matija Snuderl; Amulya Nageswara Rao; Caterina Giannini; Mark W. Kieran; Keith L. Ligon

Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively ( P < .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy.


Journal of Clinical Oncology | 2015

Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Münster Study Group

Kim Klein; Gertjan J. L. Kaspers; Christine J. Harrison; H. Berna Beverloo; Ardine Reedijk; Mathilda L. Bongers; Jacqueline Cloos; Andrea Pession; Dirk Reinhardt; Martin Zimmerman; Ursula Creutzig; Michael Dworzak; Todd A. Alonzo; Donna L. Johnston; Betsy Hirsch; Michal Zapotocky; Barbara De Moerloose; Alcira Fynn; Vincent H.L. Lee; Takashi Taga; Akio Tawa; Anne Auvrignon; Bernward Zeller; Erik Forestier; Carmen Salgado; Walentyna Balwierz; Alexander Popa; Jeffrey E. Rubnitz; Susana C. Raimondi; Brenda Gibson

PURPOSE This retrospective cohort study aimed to determine the predictive relevance of clinical characteristics, additional cytogenetic aberrations, and cKIT and RAS mutations, as well as to evaluate whether specific treatment elements were associated with outcomes in pediatric t(8;21)-positive patients with acute myeloid leukemia (AML). PATIENTS AND METHODS Karyotypes of 916 pediatric patients with t(8;21)-AML were reviewed for the presence of additional cytogenetic aberrations, and 228 samples were screened for presence of cKIT and RAS mutations. Multivariable regression models were used to assess the relevance of anthracyclines, cytarabine, and etoposide during induction and overall treatment. End points were the probability of achieving complete remission, cumulative incidence of relapse (CIR), probability of event-free survival, and probability of overall survival. RESULTS Of 838 patients included in final analyses, 92% achieved complete remission. The 5-year overall survival, event-free survival, and CIR were 74%, 58%, and 26%, respectively. cKIT mutations and RAS mutations were not significantly associated with outcome. Patients with deletions of chromosome arm 9q [del(9q); n = 104] had a lower probability of complete remission (P = .01). Gain of chromosome 4 (+4; n = 21) was associated with inferior CIR and survival (P < .01). Anthracycline doses greater than 150 mg/m(2) and etoposide doses greater than 500 mg/m(2) in the first induction course and high-dose cytarabine 3 g/m(2) during induction were associated with better outcomes on various end points. Cumulative doses of cytarabine greater than 30 g/m(2) and etoposide greater than 1,500 mg/m(2) were associated with lower CIR rates and better probability of event-free survival. CONCLUSION Pediatric patients with t(8;21)-AML and additional del(9q) or additional +4 might not be considered at good risk. Patients with t(8;21)-AML likely benefit from protocols that have high doses of anthracyclines, etoposide, and cytarabine during induction, as well as from protocols comprising cumulative high doses of cytarabine and etoposide.


Journal of Neurosurgery | 2018

Differential patterns of metastatic dissemination across medulloblastoma subgroups

Michal Zapotocky; Daddy Mata-Mbemba; David Sumerauer; Petr Liby; Alvaro Lassaletta; Josef Zamecnik; Lenka Krskova; Martin Kyncl; Jan Stary; Suzanne Laughlin; Anthony Arnoldo; Cynthia Hawkins; Uri Tabori; Michael D. Taylor; Eric Bouffet; Charles Raybaud; Vijay Ramaswamy

OBJECTIVE Metastatic dissemination is a major treatment challenge and cause of death in patients with medulloblastoma. However, the influence of molecular biology on the pattern of metastatic dissemination at diagnosis is not known. In this study, the authors sought to define the location, pattern, and imaging characteristics of medulloblastoma metastases across subgroups at diagnosis. METHODS A consecutive cohort of patients with metastatic medulloblastoma at The Hospital for Sick Children and the University Hospital Motol, who underwent up-front MRI of the craniospinal axis, was assembled and allocated to subgroups using NanoString limited gene-expression profiling. Radiological characteristics (including location, morphology, size, diffusion restriction, and contrast enhancement) were discerned through a retrospective review. RESULTS Forty metastatic medulloblastomas were identified with up-front neuroimaging of the craniospinal axis: 5 sonic hedgehog (SHH), 16 Group 3, and 19 Group 4 metastases. Significant subgroup-specific differences were observed, particularly with respect to tumor location, size, and morphology. Group 3 metastases were most frequently laminar compared with a more nodular pattern in Group 4 (14 of 16 in Group 3 vs 8 of 19 in Group 4; p = 0.0004). Laminar metastases were not observed in patients with SHH medulloblastoma. Suprasellar metastases are highly specific to Group 4 (p = 0.016). Two of the 5 SHH cases had multifocal lesions in the cerebellum, raising the possibility that these were in fact synchronous primary tumors and not true metastases. A minority of patients with Group 4 metastases harbored metastatic deposits that did not enhance on MRI after contrast administration, often in patients whose primary tumor did not enhance. CONCLUSIONS The location, morphology, and imaging characteristics of metastatic medulloblastoma differ across molecular subgroups, with implications for diagnosis and management. This suggests that the biology of leptomeningeal dissemination differs among medulloblastoma subgroups.


Cancer Letters | 2012

Valproic acid triggers differentiation and apoptosis in AML1/ETO-positive leukemic cells specifically

Michal Zapotocky; Ester Mejstrikova; Karel Smetana; Jan Stary; Jan Trka; Julia Starkova

Valproic acid (VPA) has extensive effects on leukemic blasts through its inhibition of histone deacetylases. The main goal of this study was to identify the subgroup of patients who may benefit most from VPA treatment. We examined the significance of t(8;21) chromosomal aberration for VPA treatment response among acute myeloid leukemia (AML) patients by direct comparison of AML1/ETO-negative vs. positive leukemic cell-lines as well as bone marrow blasts from AML patients. In t(8;21) AML, leukemogenesis is supposed to be induced via aberrant recruitment of histone deacetylases. AML cell lines of different genotypes (Kasumi-1, Kasumi-6, MV4;11, K562) and diagnostic bone marrow samples from patients were treated with VPA. VPA induced apoptosis in AML1/ETO-positive and MLL-AF4-positive cells in a dose-dependent manner. Differentiation, as indicated by changes in immunophenotype, was observed only in AML1/ETO-positive cells. VPA increased the expression of AML1 target genes - PU.1, C/EBPa, BPI and IGFBP7 only in AML1/ETO-positive cells. This AML1/ETO-specific effect was confirmed also using patient blasts isolated at the time of diagnosis. AML1/ETO-positive leukemia shows specific mechanism of VPA residing from differentiation followed by apoptosis that is accompanied by an increase in the expression of repressed AML1 target genes. Our data suggest that AML1/ETO-positive patients might derive the greatest benefit from VPA treatment.


Pediatric Blood & Cancer | 2016

Profound clinical and radiological response to BRAF inhibition in a 2-month-old diencephalic child with hypothalamic/chiasmatic glioma.

Alvaro Lassaletta; Ana Guerreiro Stucklin; Vijay Ramaswamy; Michal Zapotocky; Tara McKeown; Cynthia Hawkins; Eric Bouffet; Uri Tabori

Infants with low‐grade glioma (LGG) have a poor survival. BRAFV600E mutation has been identified in pediatric LGG; however, the use of BRAF inhibitors in infants has never been reported. A 2‐month‐old with V600E mutant hypothalamic/chiasmatic glioma progressed on chemotherapy resulting in profound visual loss, massive ascites, and diencephalic syndrome. Initiation of dabrafenib resulted in rapid and sustained disappearance of clinical symptoms and a profound sustained cytoreduction. BRAF inhibition was safely tolerated with dramatic clinicoradiological response, suggesting early targeted therapy is a viable option in infants with LGG. A re‐evaluation of current management paradigms in this population is warranted to leverage the potential benefit of upfront‐targeted therapies.


Childs Nervous System | 2016

An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update

Alvaro Lassaletta; Michal Zapotocky; Eric Bouffet; Cynthia Hawkins; Uri Tabori

Hemispheric low-grade gliomas account for the second most common location in pediatric low-grade gliomas (PLGGs) after the cerebellum. The pathological spectrum includes gangliogliomas, dysembryoplastic neuroepithelial tumors (DNETs), diffuse astrocytomas, pilocytic astrocytomas, and pleomorphic xanthoastrocytomas (PXAs), among others. Clinically, hemispheric PLGGs represent a well-recognized cause of intractable epilepsy in children and adolescents. With an excellent long-term outcome, surgery remains the cornerstone and patients with gross total resection typically do not need any further therapies. The recent literature about hemispheric PLGGs was reviewed to provide an up-to-date overview of the molecular and cell biology of these tumors. Hemispheric PLGGs can harbor multiple alterations involving BRAFV600E, FGFR, NTRK, MYB/MYBL1, IDH, and BRAF-KIAA1549 fusions. However, the clinical significance of most of these alterations is still to be defined. The role of RAS/MAPK mutations and other alterations in hemispheric PLGGs is of interest from diagnostic, prognostic, and therapeutic perspectives. Molecular testing for these tumors should be encouraged, since the findings can have an important impact not only in prognosis but also in therapeutic strategies.


Childs Nervous System | 2017

H3 K27M mutations are extremely rare in posterior fossa group A ependymoma

Scott Ryall; Miguel Guzman; Samer K. Elbabaa; Betty Luu; Stephen C. Mack; Michal Zapotocky; Michael D. Taylor; Cynthia Hawkins; Vijay Ramaswamy

BackgroundMutations in the tail of histone H3 (K27M) are frequently found in pediatric midline high-grade glioma’s but have rarely been reported in other malignancies. Recently, recurrent somatic nucleotide variants in histone H3 (H3 K27M) have been reported in group A posterior fossa ependymoma (EPN_PFA), an entity previously described to have no recurrent mutations. However, the true incidence of H3 K27M mutations in EPN_PFA is unknown.MethodsIn order to discern the frequency of K27M mutations in histone H3 in EPN_PFA, we analyzed 151 EPN_PFA previously profiled with genome-wide methylation arrays using a validated droplet digital PCR assay.ResultsWe identified only 1 case out of 151 EPN_PFA harboring the K27M mutation indicating that histone mutations are extremely rare in EPN_PFA. Morphologically, this single mutated case is clearly consistent with an ependymoma, and the presence of the K27M mutation was confirmed using immunohistochemistry.DiscussionK27M mutations are extremely rare in EPN_PFA. Routine evaluation of K27M mutations in EPN_PFA is of limited utility, and is unlikely to have any bearing on prognosis and/or future risk stratification.


Journal of Neuropathology and Experimental Neurology | 2017

Multiplex Detection of Pediatric Low-Grade Glioma Signature Fusion Transcripts and Duplications Using the NanoString nCounter System

Scott Ryall; Anthony Arnoldo; Rahul Krishnatry; Matthew Mistry; Kangzi Khor; Javal Sheth; Cino Ling; Stephie Leung; Michal Zapotocky; Ana Guerreiro Stucklin; Alvaro Lassaletta; Mary Shago; Uri Tabori; Cynthia Hawkins

Previous studies identified recurrent fusion and duplication events in pediatric low-grade glioma (pLGG). In addition to their role in diagnosis, the presence of these events aid in dictating therapy and predicting patient survival. Clinically, BRAF alterations are most commonly identified using fluorescent in situ hybridization (FISH). However, this method is costly, labor-intensive and does not identify nonBRAF events. Here, we evaluated the NanoString nCounter gene expression system for detecting 32 of the most commonly reported fusion/duplication events in pLGG. The assay was validated on 90 pLGG samples using FISH as the gold standard and showed sensitivity and specificity of 97% and 98%, respectively. We next profiled formalin-fixed paraffin-embedded preserved biopsy specimens from 429 pLGG cases. 171 (40%) of the cases within our cohort tested positive for a fusion or duplication event contained within our panel. These events, in order of prevalence, were KIAA1549-BRAF 16;9 (89/171, 52.0%), KIAA1549-BRAF 15;9 (42/171, 24.6%), KIAA1549-BRAF 16;11 (14/171, 8.2%), FGFR1-TACC1 17;7 (13/171, 7.6%), MYBL1 duplication (5/171, 2.9%), KIAA1549-BRAF 18;10 (4/171, 2.3%), KIAA1549-BRAF 15;11 (2/171, 1.2%), FAM131B-BRAF 2;9 (1/171, 0.6%), and RNF130-BRAF 3;9 (1/171, 0.6%). This work introduces NanoString as a viable clinical replacement for the detection of fusion and duplication events in pLGG.

Collaboration


Dive into the Michal Zapotocky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge