Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michalina Janiszewska is active.

Publication


Featured researches published by Michalina Janiszewska.


Cancer Research | 2009

EZH2 Is Essential for Glioblastoma Cancer Stem Cell Maintenance

Mario-Luca Suvà; Nicolo Riggi; Michalina Janiszewska; Ivan Radovanovic; Paolo Provero; Jean-Christophe Stehle; Karine Baumer; Marie-Aude Le Bitoux; Denis Marino; Luisa Cironi; Victor E. Marquez; Virginie Clement; Ivan Stamenkovic

Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.


Genes & Development | 2012

Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells

Michalina Janiszewska; Mario L. Suvà; Nicolo Riggi; Riekelt H. Houtkooper; Johan Auwerx; Virginie Clément-Schatlo; Ivan Radovanovic; Esther Rheinbay; Paolo Provero; Ivan Stamenkovic

Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.


Nature Genetics | 2015

In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer.

Michalina Janiszewska; Lin Liu; Vanessa Almendro; Yanan Kuang; Cloud P. Paweletz; Rita A. Sakr; Britta Weigelt; Ariella B. Hanker; Sarat Chandarlapaty; Tari A. King; Jorge S. Reis-Filho; Carlos L. Arteaga; So Yeon Park; Franziska Michor; Kornelia Polyak

Detection of minor, genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (specific-to-allele PCR–FISH), a novel method for the combined detection of single-nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2 (ERBB2) amplification within HER2-positive breast cancer during neoadjuvant therapy. We found that these two genetic events are not always present in the same cells. Chemotherapy selects for PIK3CA-mutant cells, a minor subpopulation in nearly all treatment-naive samples, and modulates genetic diversity within tumors. Treatment-associated changes in the spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant therapy with trastuzumab. Our findings support the use of in situ single cell–based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance.


PLOS ONE | 2011

Let-7a Is a Direct EWS-FLI-1 Target Implicated in Ewing's Sarcoma Development

Claudio De Vito; Nicolo Riggi; Mario-Luca Suvà; Michalina Janiszewska; Janine Horlbeck; Karine Baumer; Paolo Provero; Ivan Stamenkovic

Ewings sarcoma family tumors (ESFT) are the second most common bone malignancy in children and young adults, characterized by unique chromosomal translocations that in 85% of cases lead to expression of the EWS-FLI-1 fusion protein. EWS-FLI-1 functions as an aberrant transcription factor that can both induce and suppress members of its target gene repertoire. We have recently demonstrated that EWS-FLI-1 can alter microRNA (miRNA) expression and that miRNA145 is a direct EWS-FLI-1 target whose suppression is implicated in ESFT development. Here, we use miRNA arrays to compare the global miRNA expression profile of human mesenchymal stem cells (MSC) and ESFT cell lines, and show that ESFT display a distinct miRNA signature that includes induction of the oncogenic miRNA 17–92 cluster and repression of the tumor suppressor let-7 family. We demonstrate that direct repression of let-7a by EWS-FLI-1 participates in the tumorigenic potential of ESFT cells in vivo. The mechanism whereby let-7a expression regulates ESFT growth is shown to be mediated by its target gene HMGA2, as let-7a overexpression and HMGA2 repression both block ESFT cell tumorigenicity. Consistent with these observations, systemic delivery of synthetic let-7a into ESFT-bearing mice restored its expression in tumor cells, decreased HMGA2 expression levels and resulted in ESFT growth inhibition in vivo. Our observations provide evidence that deregulation of let-7a target gene expression participates in ESFT development and identify let-7a as promising new therapeutic target for one of the most aggressive pediatric malignancies.


PLOS ONE | 2009

Epigenetic Features of Human Mesenchymal Stem Cells Determine Their Permissiveness for Induction of Relevant Transcriptional Changes by SYT-SSX1

Luisa Cironi; Paolo Provero; Nicola Riggi; Michalina Janiszewska; Domizio Suva; Mario-Luca Suvà; V. Kindler; Ivan Stamenkovic

Background A characteristic SYT–SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. Methodology/Principal Findings We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. Conclusions/Significance Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects.


Nature Reviews Cancer | 2017

Classifying the evolutionary and ecological features of neoplasms

Carlo C. Maley; Athena Aktipis; Trevor A. Graham; Andrea Sottoriva; Amy M. Boddy; Michalina Janiszewska; Ariosto S. Silva; Marco Gerlinger; Yinyin Yuan; Kenneth J. Pienta; Karen S. Anderson; Robert A. Gatenby; Charles Swanton; David Posada; Chung I. Wu; Joshua D. Schiffman; E. Shelley Hwang; Kornelia Polyak; Alexander R. A. Anderson; Joel S. Brown; Mel Greaves; Darryl Shibata

Neoplasms change over time through a process of cell-level evolution, driven by genetic and epigenetic alterations. However, the ecology of the microenvironment of a neoplastic cell determines which changes provide adaptive benefits. There is widespread recognition of the importance of these evolutionary and ecological processes in cancer, but to date, no system has been proposed for drawing clinically relevant distinctions between how different tumours are evolving. On the basis of a consensus conference of experts in the fields of cancer evolution and cancer ecology, we propose a framework for classifying tumours that is based on four relevant components. These are the diversity of neoplastic cells (intratumoural heterogeneity) and changes over time in that diversity, which make up an evolutionary index (Evo-index), as well as the hazards to neoplastic cell survival and the resources available to neoplastic cells, which make up an ecological index (Eco-index). We review evidence demonstrating the importance of each of these factors and describe multiple methods that can be used to measure them. Development of this classification system holds promise for enabling clinicians to personalize optimal interventions based on the evolvability of the patients tumour. The Evo- and Eco-indices provide a common lexicon for communicating about how neoplasms change in response to interventions, with potential implications for clinical trials, personalized medicine and basic cancer research.


Journal of Biological Chemistry | 2010

Transportin Regulates Nuclear Import of CD44

Michalina Janiszewska; Claudio De Vito; Marie-Aude Le Bitoux; Carlo Fusco; Ivan Stamenkovic

CD44 is a facultative cell surface proteoglycan that serves as the principal cell surface receptor for hyaluronan (HA). Studies have shown that in addition to participating in numerous signaling pathways, CD44 becomes internalized upon engagement by ligand and that a portion of its intracellular domain can translocate to the nucleus where it is believed to play a functional role in cell proliferation and survival. However, the mechanisms whereby fragments of CD44 enter the nucleus have not been elucidated. Here we show that CD44 interacts with two import receptors of the importin β superfamily, importin β itself and transportin. Inhibition of importin β-dependent transport failed to block CD44 accumulation in the nucleus. By contrast, inhibition of the transportin-dependent pathway abrogated CD44 import. Mutagenesis of the intracellular domain of CD44 revealed that the 20 membrane-proximal residues contain sequences required for transportin-mediated nuclear transport. Our observations provide evidence that CD44 interacts with importin family members and identify the transportin-dependent pathway as the mechanism whereby full-length CD44 enters the nucleus.


Cancer Research | 2016

Spatial proximity to fibroblasts impacts molecular features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes

Andriy Marusyk; Doris P. Tabassum; Michalina Janiszewska; Andrew E. Place; Anne Trinh; Andrii I. Rozhok; Saumyadipta Pyne; Jennifer L. Guerriero; Shaokun Shu; Muhammad B. Ekram; Alexander Ishkin; Daniel P. Cahill; Yuri Nikolsky; Timothy A. Chan; Mothaffar F. Rimawi; Susan G. Hilsenbeck; Rachel Schiff; Kent Osborne; Antony Letai; Kornelia Polyak

Using a three-dimensional coculture model, we identified significant subtype-specific changes in gene expression, metabolic, and therapeutic sensitivity profiles of breast cancer cells in contact with cancer-associated fibroblasts (CAF). CAF-induced gene expression signatures predicted clinical outcome and immune-related differences in the microenvironment. We found that fibroblasts strongly protect carcinoma cells from lapatinib, attributable to its reduced accumulation in carcinoma cells and an elevated apoptotic threshold. Fibroblasts from normal breast tissues and stromal cultures of brain metastases of breast cancer had similar effects as CAFs. Using synthetic lethality approaches, we identified molecular pathways whose inhibition sensitizes HER2+ breast cancer cells to lapatinib both in vitro and in vivo, including JAK2/STAT3 and hyaluronic acid. Neoadjuvant lapatinib therapy in HER2+ breast tumors lead to a significant increase of phospho-STAT3+ cancer cells and a decrease in the spatial proximity of proliferating (Ki67+) cells to CAFs impacting therapeutic responses. Our studies identify CAF-induced physiologically and clinically relevant changes in cancer cells and offer novel approaches for overcoming microenvironment-mediated therapeutic resistance. Cancer Res; 76(22); 6495-506. ©2016 AACR.


Cell Stem Cell | 2015

Clonal evolution in cancer: a tale of twisted twines.

Michalina Janiszewska; Kornelia Polyak

Intra-tumor heterogeneity of cancer cells hampers the design of effective therapies and yet it is poorly reproduced in experimental models. A recent report by Eirew at al. provides an in-depth analysis of genetic heterogeneity of breast tumor xenografts and shows that changes in clonal diversity might not be stochastic.


Nature Cell Biology | 2018

A confetti trail of tumour evolution

Michalina Janiszewska; Kornelia Polyak

Multiple clones of cancer cells co-exist within a tumour, and yet it is not clear when these subclones arise and how they contribute to tumour progression. A multicolour clonal tracing study now shows that benign skin tumours are mostly monoclonal while the more advanced lesions are composed of multiple intermixed subclones.

Collaboration


Dive into the Michalina Janiszewska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge