Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michalis Liontos is active.

Publication


Featured researches published by Michalis Liontos.


Nature | 2006

Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints.

Jirina Bartkova; Nousin Rezaei; Michalis Liontos; Panagiotis Karakaidos; Dimitris Kletsas; Natalia Issaeva; Leandros-Vassilios F. Vassiliou; Evangelos Kolettas; Katerina Niforou; Vassilis C. Zoumpourlis; Munenori Takaoka; Hiroshi Nakagawa; Frederic Tort; Kasper Fugger; Fredrik Johansson; Maxwell Sehested; Claus L. Andersen; Lars Dyrskjøt; Torben F. Ørntoft; Jiri Lukas; Christos Kittas; Thomas Helleday; Thanos D. Halazonetis; Jiri Bartek; Vassilis G. Gorgoulis

Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.


Nature Cell Biology | 2011

Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer

Raffaella Di Micco; Gabriele Sulli; Miryana Dobreva; Michalis Liontos; Oronza A. Botrugno; Gaetano Gargiulo; Roberto Dal Zuffo; Valentina Matti; Giovanni d'Ario; Erica Montani; Ciro Mercurio; William C. Hahn; Vassilis G. Gorgoulis; Saverio Minucci; Fabrizio d'Adda di Fagagna

Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16INK4a induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours.


Cancer Research | 2007

Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells.

Lilach Weisz; Alexander Damalas; Michalis Liontos; Panagiotis Karakaidos; Giulia Fontemaggi; Revital Maor-Aloni; Marina Kalis; Massimo Levrero; Sabrina Strano; Vassilis G. Gorgoulis; Varda Rotter; Giovanni Blandino; Moshe Oren

Mutations in the p53 tumor suppressor are very frequent in human cancer. Often, such mutations lead to the constitutive overproduction of mutant p53 proteins, which may exert a cancer-promoting gain of function. We now report that cancer-associated mutant p53 can augment the induction of nuclear factor kappaB (NFkappaB) transcriptional activity in response to the cytokine tumor necrosis factor alpha (TNFalpha). Conversely, down-regulation of endogenous mutant p53 sensitizes cancer cells to the apoptotic effects of TNFalpha. Analysis of human head and neck tumors and lung tumors reveals a close correlation between the presence of abundant mutant p53 proteins and the constitutive activation of NFkappaB. Together, these findings suggest that p53 mutations may promote cancer progression by augmenting NFkappaB activation in the context of chronic inflammation.


Cancer Research | 2007

Deregulated Overexpression of hCdt1 and hCdc6 Promotes Malignant Behavior

Michalis Liontos; Marilena Koutsami; Maria Sideridou; Konstantinos Evangelou; Dimitris Kletsas; Brynn Levy; Athanassios Kotsinas; Odelia Nahum; Vassilis Zoumpourlis; Mirsini Kouloukoussa; Zoi Lygerou; Stavros Taraviras; Christos Kittas; Jirina Bartkova; Athanasios G. Papavassiliou; Jiri Bartek; Thanos D. Halazonetis; Vassilis G. Gorgoulis

The accurate execution of DNA replication requires a strict control of the replication licensing factors hCdt1 and hCdc6. The role of these key replication molecules in carcinogenesis has not been clarified. To examine how early during cancer development deregulation of these factors occurs, we investigated their status in epithelial lesions covering progressive stages of hyperplasia, dysplasia, and full malignancy, mostly from the same patients. Abnormal accumulation of both proteins occurred early from the stage of dysplasia. A frequent cause of unregulated hCdc6 and hCdt1 expression was gene amplification, suggesting that these components can play a role per se in cancer development. Overexpression of hCdt1 and hCdc6 promoted rereplication and generated a DNA damage response, which activated the antitumor barriers of senescence and apoptosis. Generating an inducible hCdt1 cellular system, we observed that continuous stimulus by deregulated hCdt1 led to abrogation of the antitumor barriers and resulted in the selection of clones with more aggressive properties. In addition, stable expression of hCdc6 and hCdt1 in premalignant papilloma cells led to transformation of the cells that produced tumors upon injection into nude mice depicting the oncogenic potential of their deregulation.


Cell Death & Differentiation | 2014

Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation

M Ogrunc; R. Di Micco; Michalis Liontos; L Bombardelli; Marina Mione; Marzia Fumagalli; Vassilis G. Gorgoulis; F d'Adda di Fagagna

Oncogene-induced reactive oxygen species (ROS) have been proposed to be signaling molecules that mediate proliferative cues. However, ROS may also cause DNA damage and proliferative arrest. How these apparently opposite roles can be reconciled, especially in the context of oncogene-induced cellular senescence, which is associated both with aberrant mitogenic signaling and DNA damage response (DDR)-mediated arrest, is unclear. Here, we show that ROS are indeed mitogenic signaling molecules that fuel oncogene-driven aberrant cell proliferation. However, by their very same ability to mediate cell hyperproliferation, ROS eventually cause DDR activation. We also show that oncogenic Ras-induced ROS are produced in a Rac1 and NADPH oxidase (Nox4)-dependent manner. In addition, we show that Ras-induced ROS can be detected and modulated in a living transparent animal: the zebrafish. Finally, in cancer we show that Nox4 is increased in both human tumors and a mouse model of pancreatic cancer and specific Nox4 small-molecule inhibitors act synergistically with existing chemotherapic agents.


Nature Cell Biology | 2013

Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer

Georgia Velimezi; Michalis Liontos; Konstantinos Vougas; Theodoros Roumeliotis; Jirina Bartkova; Maria Sideridou; Ayguel Dereli-Oz; Maciej Kocylowski; Ioannis S. Pateras; Kostas Evangelou; Athanassios Kotsinas; Ines Orsolic; Sladana Bursac; Maja Cokaric-Brdovcak; Vassilis Zoumpourlis; Dimitris Kletsas; George Papafotiou; Apostolos Klinakis; Siniša Volarević; Wei Gu; Jiri Bartek; Thanos D. Halazonetis; Vassilis G. Gorgoulis

The DNA damage response (DDR) pathway and ARF function as barriers to cancer development. Although commonly regarded as operating independently of each other, some studies proposed that ARF is positively regulated by the DDR. Contrary to either scenario, we found that in human oncogene-transformed and cancer cells, ATM suppressed ARF protein levels and activity in a transcription-independent manner. Mechanistically, ATM activated protein phosphatase 1, which antagonized Nek2-dependent phosphorylation of nucleophosmin (NPM), thereby liberating ARF from NPM and rendering it susceptible to degradation by the ULF E3-ubiquitin ligase. In human clinical samples, loss of ATM expression correlated with increased ARF levels and in xenograft and tissue culture models, inhibition of ATM stimulated the tumour-suppressive effects of ARF. These results provide insights into the functional interplay between the DDR and ARF anti-cancer barriers, with implications for tumorigenesis and treatment of advanced tumours.


Molecular Cell | 2009

SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1.

Simon A. Woodcock; Claire M Rooney; Michalis Liontos; Yvonne Connolly; Vassilis Zoumpourlis; Anthony D. Whetton; Vassilis G. Gorgoulis; Angeliki Malliri

The Rac activator Tiam1 is required for adherens junction (AJ) maintenance, and its depletion results in AJ disassembly. Conversely, the oncoprotein Src potently induces AJ disassembly and epithelial-mesenchymal transition (EMT). Here, we show that Tiam1 is phosphorylated on Y384 by Src. This occurs predominantly at AJs, is required for Src-induced AJ disassembly and cell migration, and creates a docking site on Tiam1 for Grb2. We find that Tiam1 is associated with ERK. Following recruitment of the Grb2-Sos1 complex, ERK becomes activated and triggers the localized degradation of Tiam1 at AJs, likely involving calpain proteases. Furthermore, we demonstrate that, in human tumors, Y384 phosphorylation positively correlates with Src activity, and total Tiam1 levels are inversely correlated. Thus, our data implicate Tiam1 phosphorylation and consequent degradation in Src-mediated EMT and resultant cell motility and establish a paradigm for regulating local concentrations of Rho-GEFs.


Journal of Cell Biology | 2011

Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins

Maria Sideridou; Roubini Zakopoulou; Konstantinos Evangelou; Michalis Liontos; Athanassios Kotsinas; E. Rampakakis; Sarantis Gagos; Kaoru Kahata; Kristina Grabušić; Kalliopi Gkouskou; Ioannis P. Trougakos; Evangelos Kolettas; Alexandros G. Georgakilas; Siniša Volarević; Aristides G. Eliopoulos; Maria Zannis-Hadjopoulos; Aristidis Moustakas; Vassilis G. Gorgoulis

The Cdc6 replication licensing factor acts as a molecular switch at the E-cadherin locus, leading to E-cadherin transcriptional repression and local activation of replication.


The Journal of Pathology | 2007

Gene amplification is a relatively frequent event leading to ZBTB7A (Pokemon) overexpression in non-small cell lung cancer.

Kalliopi Apostolopoulou; Ioannis S. Pateras; Kostas Evangelou; Pk Tsantoulis; Michalis Liontos; Christos Kittas; Dina Tiniakos; Athanassios Kotsinas; Carlos Cordon-Cardo; Vassilis G. Gorgoulis

ZBTB7A (Pokemon) is a member of the POK family of transcriptional repressors. Its main function is the suppression of the p14ARF tumour suppressor gene. Although ZBTB7A expression has been found to be increased in various types of lymphoma, there are no reports dealing with its expression in solid tumours. Given that p14ARF inhibits MDM2, the main negative regulator of p53, we hypothesized that overexpression of ZBTB7A could lead indirectly to p53 inactivation. To this end, we examined the status of ZBTB7A and its relationship with tumour kinetics (proliferation and apoptosis) and nodal members of the p53 network in a panel of 83 non‐small cell lung carcinomas (NSCLCs). We observed, in the majority of the samples, prominent expression of ZBTB7A in the cancerous areas compared to negligible presence in the adjacent normal tissue elements. Gene amplification (two‐ to five‐fold) was found in 27.7% of the cases, denoting its significance as a mechanism driving ZBTB7A overproduction in NSCLCs. In the remaining non‐amplified group of carcinomas, analysis of the mRNA and protein expression patterns suggested that deregulation at the transcriptional and post‐translational level accounts for ZBTB7A overexpression. Proliferation was associated with ZBTB7A expression (p = 0.033) but not apoptosis. The association with proliferation was reflected in the positive correlation between ZBTB7A expression and tumour size (p = 0.018). The overexpression of ZBTB7A in both p53 mutant and p53 wild‐type cases, implies either a synergistic effect or that ZBTB7A exerts its oncogenic properties independently of the p14ARF–MDM2–p53 axis. The concomitant expression of ZBTB7A with p14ARF (p = 0.039), instead of the anticipated inverse relation, supports the latter notion. In conclusion, regardless of the pathway followed, the distinct expression of ZBTB7A in cancerous areas and the association with proliferation and tumour size pinpoints a role for this novel cell cycle regulator in the pathogenesis of lung cancer. Copyright


International Journal of Molecular Sciences | 2013

Angiogenesis-Related Pathways in the Pathogenesis of Ovarian Cancer

Nikos G. Gavalas; Michalis Liontos; Sofia-Paraskevi Trachana; Tina Bagratuni; Calliope Arapinis; Christine Liacos; Meletios A. Dimopoulos; Aristotle Bamias

Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in “feeding” cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.

Collaboration


Dive into the Michalis Liontos's collaboration.

Top Co-Authors

Avatar

Vassilis G. Gorgoulis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Athanassios Kotsinas

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Aristotelis Bamias

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Ioannis S. Pateras

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Aristotle Bamias

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Christos Kittas

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athanasios G. Papavassiliou

National and Kapodistrian University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge