Micheal Stone
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Micheal Stone.
Environmental Science & Technology | 2014
Kevin D. Bladon; Monica B. Emelko; Uldis Silins; Micheal Stone
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.
Water Research | 2003
Micheal Stone; Bommanna G. Krishnappan
Fractal dimensions of particle populations of cohesive sediment were examined during deposition experiments in an annular flume at four conditions of steady-state flow (0.058, 0.123, 0.212 and 0.323Pa). Light microscopy and an image analysis system were used to determine area, longest axis and perimeter of suspended solids. Four fractal dimensions (D, D(1), D(2), D(k)) were calculated from the slopes of regression lines of the relevant variables on double log plots. The fractal dimension D, which relates the projected area (A) to the perimeter (P) of the particle (P proportional, variant A(D/2)), increased from 1.25+/-0.005 at a shear stress of 0.058Pa to a maximum of 1.36+/-0.003 at 0.121Pa then decreased to 1.34+/-0.001 at 0.323Pa. The change in D indicated that particle boundaries became more convoluted and the shape of larger particles was more irregular at higher levels of shear stress. At the highest shear stress, the observed decrease in D resulted from floc breakage due to increased particle collisions. The fractal dimension D(1), which relates the longest axis (l) to the perimeter of the particle (P proportional to l(D1)), increased from 1.00+/-0.006 at a shear stress of 0.058Pa to a maximum of 1.25+/-0.003 at 0.325Pa. The fractal dimension D(2), which relates the longest axis with the projected area of the particle (A proportional to l(D(2)), increased from 1.35+/-0.014 at a shear stress of 0.058Pa to a maximum of 1.81+/-0.005 at 0.323Pa. The observed increases in D(1) and D(2) indicate that particles became more elongated with increasing shear stress. Values of the fractal dimension D(k), resulting from the Korcaks empirical law for particle population, decreased from 3.68+/-0.002 at a shear stress of 0.058Pa to 1.33+/-0.001 at 0.323Pa and indicate that the particle size distribution changed from a population of similar sized particles at low shear to larger flocculated particles at higher levels of shear. The results show that small particle clusters (micro-flocs) are the formational units of larger flocs in the water column and the stability of larger flocs is a function of the shear stress at steady state.
Water Research | 2008
Micheal Stone; Bommanna G. Krishnappan; Monica B. Emelko
Erosion experiments were conducted in an annular flume to determine the effect of bed age and shear stress on the particle morphology (fractal dimensions D, D(1), and D(k)) of eroded cohesive river sediment. Sediment beds were deposited under low shear and left to consolidate for one, two and seven days. Fractal data and photomicrographs show particle morphology changed with shear stress and bed age. During the one-day experiment, flocs were highly branched and particle geometry became more complex with increasing shear. Microflocs present in suspension at low shear, formed larger more loosely bound flocs at moderate shear due to flocculation. At higher shear, larger flocs were less prevalent due to particle breakup. As bed age increased, less sediment was eroded and particles appeared less porous and more angular in shape for a given shear stress. Changes in floc morphology and eroded sediment mass at various shear stresses may be related to bed age-associated biostabilization of bed deposits.
Hydrological Processes | 1997
Michael English; R. Brad Hill; Micheal Stone; Ron Ormson
This paper examines geomorphological and botanical changes on the outer low elevation portion of the Slave River Delta prior to and after impoundment of the Peace River at Hudsons Hope, British Columbia. The Slave River Delta deposits are approximately 8300 km 2 , about 5% (400 km 2 ) is defined as the active delta which progrades into Great Slave Lake through an active system of distributaries. This active portion of the delta is the area studied. The Peace River provides approximately 65% of the annual flow of the Slave River. Alteration of the natural flow regime and suspended sediment load of the Slave River has resulted from the upstream impoundment. Calculations indicate that the annual suspended sediment load in the Slave River has decreased by 33%. Using aerial photographs of the Slave Delta taken in 1946 and 1966, prior to damming the Peace River, geomorphological change and the spatial changes in plant assemblages have been recorded using GIS software. Aerial photographs taken in 1977 and 1994 were used in similar fashion to document geomorphological and botanical change and rates of change after impoundment. The Outer Delta is most susceptible to hydrological and suspended sediment changes in the river system. As such it is shown that geomorphological development in these Outer Delta landforms has been notably reduced since impoundment and changes in plant assemblage distribution indicates a drier, less productive environment. Results of aerial photo analysis show that the rate of development of distinctive cleavage bar islands on the Outer Delta has been notably reduced since impoundment. Changes in plant assemblage areas on these islands indicates both an autogenic and allogenic change to a drier, less productive environment and actual loss, by erosion, of some of the most productive Equisetum assemblages.
Water Research | 2011
Micheal Stone; Monica B. Emelko; Ian G. Droppo; Uldis Silins
The erosion characteristics and bed stability of wildfire-affected stream sediment were measured in an annular flume. Biofilms were grown in the flume on cohesive streambed sediments collected from a wildfire affected stream and a reference undisturbed stream in southern Alberta, Canada. Examined factors that influence sediment erosion, settling and bed stability included applied shear stress, geochemical and physical properties of the sediment, floc structural characteristics and consolidation period (2, 7, 14 days). Erosion characteristics and sediment properties were strongly influenced by wildfire, consolidation period and bed biostabilization. The fire-modified sediment was more resistant to erosion than the reference unburned sediment. Settling velocities were lower in the burned sediment due to higher organic content and porosity. The critical shear stresses for erosion were 1.6 and 1.8 times higher for the burn-associated sediment after 7 and 14 days of consolidation. The differences are related to the greater degree and spatial extent (depth) of biofilm attachment in the burned sediment. Erosion depths were 4-8 times higher in burned sediment as a result of wildfire-associated biostabilization.
Science of The Total Environment | 2014
Micheal Stone; A.L. Collins; Uldis Silins; Monica B. Emelko; Y.S. Zhang
There is increasing global concern regarding the impacts of large scale land disturbance by wildfire on a wide range of water and related ecological services. This study explores the impact of the 2003 Lost Creek wildfire in the Crowsnest River basin, Alberta, Canada on regional scale sediment sources using a tracing approach. A composite geochemical fingerprinting procedure was used to apportion the sediment efflux among three key spatial sediment sources: 1) unburned (reference) 2) burned and 3) burned sub-basins that were subsequently salvage logged. Spatial sediment sources were characterized by collecting time-integrated suspended sediment samples using passive devices during the entire ice free periods in 2009 and 2010. The tracing procedure combines the Kruskal-Wallis H-test, principal component analysis and genetic-algorithm driven discriminant function analysis for source discrimination. Source apportionment was based on a numerical mass balance model deployed within a Monte Carlo framework incorporating both local optimization and global (genetic algorithm) optimization. The mean relative frequency-weighted average median inputs from the three spatial source units were estimated to be 17% (inter-quartile uncertainty range 0-32%) from the reference areas, 45% (inter-quartile uncertainty range 25-65%) from the burned areas and 38% (inter-quartile uncertainty range 14-59%) from the burned-salvage logged areas. High sediment inputs from burned and the burned-salvage logged areas, representing spatial source units 2 and 3, reflect the lasting effects of forest canopy and forest floor organic matter disturbance during the 2003 wildfire including increased runoff and sediment availability related to high terrestrial erosion, streamside mass wasting and river bank collapse. The results demonstrate the impact of wildfire and incremental pressures associated with salvage logging on catchment spatial sediment sources in higher elevation Montane regions where forest growth and vegetation recovery are relatively slow.
Water Research | 2002
Micheal Stone; Bommanna G. Krishnappan
A field-scale no-till corn plot (120 m x 90 m) located on a tile drained silt loam soil near Kintore, Ontario was irrigated with 2.5 cm of water over a 3 h period to examine the effects of irrigation on tile sediment transport in a headwater stream. Flow characteristics and the composition, concentration and size distribution of suspended solids were measured at the tile outlet, an upstream reference site and three sites located downstream of the tile drain. Results show that tile sediments at the study site are fine-grained (D50 approximately 5.0 microm) and consist primarily of quartz, anorthite/albite, dolomite and calcite. Sediment concentrations in tile effluent increased from 8 to 57 mg L(-1) after 1.5 h of irrigation and reached a maximum of 72 mg L(-1). The sediment yield from the tile drain for the irrigation event was 4.6 kg ha(-1). An unsteady, mobile boundary flow model (MOBED) was used to predict flow characteristics in the stream. According to the MOBED model, bed shear stress in the stream was approximately 6 N m(-2). This value is significantly greater than the critical shear stress for complete suspension of 1 N m(-2) for tile sediments as determined from laboratory experiments using a rotating circular flume. Grain size distributions of suspended solids in the stream were close to the dispersed size distribution because of the high shear stress in the receiving stream.
Canadian Water Resources Journal | 2011
Merrin L. Macrae; Zheng Zhang; Micheal Stone; Jonathan S. Price; Richard A. Bourbonniere; Meagan Leach
Riparian wetlands can act as both phosphorus (P) sources and sinks depending upon a range of factors that affect hydrological and biogeochemical processes that govern P mobilization. Stream flow, groundwater levels and water chemistry (total P (TP), soluble reactive P (SRP)) were measured in a series of nested piezometers along three transects located in a riparian zone prior to and throughout a flood event resulting from the release of water from an upstream reservoir. Results of the study show that the stream was influent on all sampling dates, and groundwater flow through the riparian zone was longitudinal to the channel, rather than transverse to the stream. This drainage pattern affected riparian zone biogeochemistry. The riparian zone was a source of TP and SRP to the shallow groundwater system under both pre-flood and flood conditions, as P levels were higher in piezometers at the downstream end of the riparian zone (p <0.001). Flooding induced a brief increase in TP concentrations in shallow groundwater due to mixing with surface runoff following overbank flooding; however, these concentrations quickly returned to pre-event levels. In contrast, SRP concentrations in shallow groundwater decreased during flooding, likely resulting from mixing with oxygen-rich stream water. A large pulse of TP (12,000 g L1) was observed in the creek on the peak flood date. This P did not originate from the reservoir and was more likely due to the mobilization of P from the riparian zone surface when overbank flooding occurred. The results indicate that autumn flooding of riparian zones downstream from impoundments may mobilize phosphorus if overbank flooding occurs, thereby reducing the nutrient retention potential of riparian zones in some settings.
Journal of Hydrologic Engineering | 2014
Scott J. Ketcheson; Jonathan S. Price; Susan Louise Tighe; Micheal Stone
AbstractPervious concrete pavement can effectively reduce both the volume of water and the concentration of many sediment-associated contaminants in urban runoff. However, chloride from road salt is recognized as a threat to surface and groundwater resources because it is a conservative ion and does not readily bind to soil particles. To better understand and manage water resources in urban environments experiencing annual freeze-thaw cycles, this study examines the impact of road salt (sodium chloride) and sand applications on water and chloride movement in pervious concrete structures in a laboratory setting. Water movement and salt retention were characterized within pervious concrete slabs under frozen and thawed conditions. Laboratory experiments were repeated using both brine (23% salt solution) and fresh water as well as varying additions of sand (typical of winter sand application rates in Canada) to provide a range of temperatures experienced in cold-climate urban environments. Performance testin...
Water Research | 2011
Monica B. Emelko; Uldis Silins; Kevin D. Bladon; Micheal Stone