Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Abdalla is active.

Publication


Featured researches published by Michel Abdalla.


international cryptology conference | 2005

Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions

Michel Abdalla; Mihir Bellare; Dario Catalano; Eike Kiltz; Tadayoshi Kohno; Tanja Lange; John Malone-Lee; Gregory Neven; Pascal Paillier; Haixia Shi

We identify and fill some gaps with regard to consistency (the extent to which false positives are produced) for public-key encryption with keyword search (PEKS). We define computational and statistical relaxations of the existing notion of perfect consistency, show that the scheme of [7] is computationally consistent, and provide a new scheme that is statistically consistent. We also provide a transform of an anonymous IBE scheme to a secure PEKS scheme that, unlike the previous one, guarantees consistency. Finally we suggest three extensions of the basic notions considered here, namely anonymous HIBE, public-key encryption with temporary keyword search, and identity-based encryption with keyword search.


public key cryptography | 2005

Password-Based authenticated key exchange in the three-party setting

Michel Abdalla; Pierre-Alain Fouque; David Pointcheval

Password-based authenticated key exchange are protocols which are designed to be secure even when the secret key or password shared between two users is drawn from a small set of values. Due to the low entropy of passwords, such protocols are always subject to on-line guessing attacks. In these attacks, the adversary may succeed with non-negligible probability by guessing the password shared between two users during its on-line attempt to impersonate one of these users. The main goal of password-based authenticated key exchange protocols is to restrict the adversary to this case only. In this paper, we consider password-based authenticated key exchange in the three-party scenario, in which the users trying to establish a secret do not share a password between themselves but only with a trusted server. Towards our goal, we recall some of the existing security notions for password-based authenticated key exchange protocols and introduce new ones that are more suitable to the case of generic constructions. We then present a natural generic construction of a three-party protocol, based on any two-party authenticated key exchange protocol, and prove its security without making use of the Random Oracle model. To the best of our knowledge, the new protocol is the first provably-secure password-based protocol in the three-party setting.


the cryptographers track at the rsa conference | 2001

The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES

Michel Abdalla; Mihir Bellare; Phillip Rogaway

This paper provides security analysis for the public-key encryption scheme DHIES (formerly named DHES and DHAES), which was proposed in [7] and is now in several draft standards. DHIES is a Diffie-Hellman based scheme that combines a symmetric encryption method, a message authentication code, and a hash function, in addition to number-theoretic operations, in a way which is intended to provide security against chosen-ciphertext attacks. In this paper we find natural assumptions under which DHIES achieves security under chosen-ciphertext attack. The assumptions we make about the Diffie-Hellman problem are interesting variants of the customary ones, and we investigate relationships among them, and provide security lower bounds. Our proofs are in the standard model; no random-oracle assumption is required.


the cryptographers track at the rsa conference | 2005

Simple password-based encrypted key exchange protocols

Michel Abdalla; David Pointcheval

Password-based encrypted key exchange are protocols that are designed to provide pair of users communicating over an unreliable channel with a secure session key even when the secret key or password shared between two users is drawn from a small set of values. In this paper, we present two simple password-based encrypted key exchange protocols based on that of Bellovin and Merritt. While one protocol is more suitable to scenarios in which the password is shared across several servers, the other enjoys better security properties. Both protocols are as efficient, if not better, as any of the existing encrypted key exchange protocols in the literature, and yet they only require a single random oracle instance. The proof of security for both protocols is in the random oracle model and based on hardness of the computational Diffie-Hellman problem. However, some of the techniques that we use are quite different from the usual ones and make use of new variants of the Diffie-Hellman problem, which are of independent interest. We also provide concrete relations between the new variants and the standard Diffie-Hellman problem.


financial cryptography | 2005

Interactive diffie-hellman assumptions with applications to password-based authentication

Michel Abdalla; David Pointcheval

Password-based authenticated key exchange are protocols that are designed to provide strong authentication for client-server applications, such as online banking, even when the users’ secret keys are considered weak (e.g., a four-digit pin). In this paper, we address this problem in the three-party setting, in which the parties trying to authenticate each other and to establish a session key only share a password with a trusted server and not directly among themselves. This is the same setting used in the popular Kerberos network authentication system. More precisely, we introduce a new three-party password-based authenticated key exchange protocol. Our protocol is reasonably efficient and has a per-user computational cost that is comparable to that of the underlying two-party authenticated key exchange protocol. The proof of security is in the random oracle model and is based on new and apparently stronger variants of the decisional Diffie-Hellman problem which are of independent interest.


public key cryptography | 2006

Password-Based group key exchange in a constant number of rounds

Michel Abdalla; Emmanuel Bresson; Olivier Chevassut; David Pointcheval

With the development of grids, distributed applications are spread across multiple computing resources and require efficient security mechanisms among the processes. Although protocols for authenticated group Diffie-Hellman key exchange protocols seem to be the natural mechanisms for supporting these applications, current solutions are either limited by the use of public key infrastructures or by their scalability, requiring a number of rounds linear in the number of group members. To overcome these shortcomings, we propose in this paper the first provably-secure password-based constant-round group key exchange protocol. It is based on the protocol of Burmester and Desmedt and is provably-secure in the random-oracle and ideal-cipher models, under the Decisional Diffie-Hellman assumption. The new protocol is very efficient and fully scalable since it only requires four rounds of communication and four multi-exponentiations per user. Moreover, the new protocol avoids intricate authentication infrastructures by relying on passwords for authentication.


international cryptology conference | 2002

From Identification to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security

Michel Abdalla; Jee Hea An; Mihir Bellare; Chanathip Namprempre

The Fiat-Shamir paradigm for transforming identification schemes into signature schemes has been popular since its introduction because it yields efficient signature schemes, and has been receiving renewed interest of late as the main tool in deriving forward-secure signature schemes. We find minimal (meaning necessary and sufficient) conditions on the identification scheme to ensure security of the signature scheme in the random oracle model, in both the usual and the forward-secure cases. Specifically we show that the signature scheme is secure (resp. forward-secure) against chosen-message attacks in the random oracle model if and only if the underlying identification scheme is secure (resp. forward-secure) against impersonation under passive (i.e.. eavesdropping only) attacks, and has its commitments drawn at random from a large space. An extension is proven incorporating a random seed into the Fiat-Shamir transform so that the commitment space assumption may be removed.


public key cryptography | 2005

One-Time verifier-based encrypted key exchange

Michel Abdalla; Olivier Chevassut; David Pointcheval

“Grid” technology enables complex interactions among computational and data resources; however, to be deployed in production computing environments “Grid” needs to implement additional security mechanisms. Recent compromises of user and server machines at Grid sites have resulted in a need for secure password-authentication key-exchange technologies. AuthA is an example of such a technology considered for standardization by the IEEE P1363.2 working group. Unfortunately in its current form AuthA does not achieve the notion of forward-secrecy in a provably-secure way nor does it allow a Grid user to log into his account using an un-trusted computer. This paper addresses this void by first proving that AuthA indeed achieves this goal, and then by modifying it in such a way that it is secure against attacks using captured user passwords or server data.


TCC'10 Proceedings of the 7th international conference on Theory of Cryptography | 2010

Robust encryption

Michel Abdalla; Mihir Bellare; Gregory Neven

We provide a provable-security treatment of “robust” encryption. Robustness means it is hard to produce a ciphertext that is valid for two different users. Robustness makes explicit a property that has been implicitly assumed in the past. We argue that it is an essential conjunct of anonymous encryption. We show that natural anonymity-preserving ways to achieve it, such as adding recipient identification information before encrypting, fail. We provide transforms that do achieve it, efficiently and provably. We assess the robustness of specific encryption schemes in the literature, providing simple patches for some that lack the property. We present various applications. Our work enables safer and simpler use of encryption.


the cryptographers track at the rsa conference | 2001

Forward-Secure Threshold Signature Schemes

Michel Abdalla; Sara K. Miner; Chanathip Namprempre

We construct forward-secure threshold signature schemes. These schemes have the following property: even if more than the threshold number of players are compromised, it is not possible to forge signatures relating to the past. This property is achieved while keeping the public key fix ed and updating the secret keys at regular intervals. The schemes are reasonably efficient in that the amount of secure storage, the signature size and the key lengths do not vary proportionally to the number of time periods during the lifetime of the public key. Both proposed schemes are based on the Bellare-Miner forward-secure signature scheme. One scheme uses multiplicative secret sharing and tolerates mobile eavesdropping adversaries. The other scheme is based on polynomial secret sharing and tolerates mobile halting adversaries. We prove both schemes secure via reduction to the Bellare-Miner scheme, which is known to be secure in the random oracle model assuming that factoring is hard.

Collaboration


Dive into the Michel Abdalla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihir Bellare

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Chevalier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Chevassut

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge